第2课时指数与指数幂的运算.doc
《第2课时指数与指数幂的运算.doc》由会员分享,可在线阅读,更多相关《第2课时指数与指数幂的运算.doc(9页珍藏版)》请在三一办公上搜索。
1、 第2课时 指数与指数幂的运算(2)导入新课思路1.碳14测年法.原来宇宙射线在大气层中能够产生放射性碳14,并与氧结合成二氧化碳后进入所有活组织,先为植物吸收,再为动物吸收,只要植物和动物生存着,它们就会不断地吸收碳14在机体内保持一定的水平.而当有机体死亡后,即会停止吸收碳14,其组织内的碳14便以约5 730年的半衰期开始衰变并消失.对于任何含碳物质只要测定剩下的放射性碳14的含量,便可推断其年代(半衰期:经过一定的时间,变为原来的一半).引出本节课题:指数与指数幂的运算之分数指数幂.思路2.同学们,我们在初中学习了整数指数幂及其运算性质,那么整数指数幂是否可以推广呢?答案是肯定的.这就
2、是本节的主讲内容,教师板书本节课题指数与指数幂的运算之分数指数幂.推进新课新知探究提出问题(1)整数指数幂的运算性质是什么?(2)观察以下式子,并总结出规律:a0,=a2=a;=a4=a;=a3=a;=a5=a.(3)利用(2)的规律,你能表示下列式子吗?,(x0,m,nN*,且n1).(4)你能用方根的意义来解释(3)的式子吗?(5)你能推广到一般的情形吗?活动:学生回顾初中学习的整数指数幂及运算性质,仔细观察,特别是每题的开始和最后两步的指数之间的关系,教师引导学生体会方根的意义,用方根的意义加以解释,指点启发学生类比(2)的规律表示,借鉴(2)(3),我们把具体推广到一般,对写正确的同学
3、及时表扬,其他学生鼓励提示.讨论结果:(1)整数指数幂的运算性质:an=aaaa,a0=1(a0);00无意义;a-n=(a0);aman=am+n;(am)n=amn;(an)m=amn;(ab)n=anbn.(2)a2是a10的5次方根;a4是a8的2次方根;a3是a12的4次方根;a5是a10的2次方根.实质上=a,=a,=a,=a结果的a的指数是2,4,3,5分别写成了,形式上变了,本质没变.根据4个式子的最后结果可以总结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式(分数指数幂形式).(3)利用(2)的规律,=5,=7,=a,=x.(4)53的四次方根是5,
4、75的三次方根是7,a7的五次方根是a,xm的n次方根是x.结果表明方根的结果和分数指数幂是相通的.(5)如果a0,那么am的n次方根可表示为m=a,即a=m(a0,m,nN*,n1).综上所述,我们得到正数的正分数指数幂的意义,教师板书:规定:正数的正分数指数幂的意义是a=m(a0,m,nN*,n1).提出问题负整数指数幂的意义是怎样规定的?你能得出负分数指数幂的意义吗?你认为应怎样规定零的分数指数幂的意义?综合上述,如何规定分数指数幂的意义?分数指数幂的意义中,为什么规定a0,去掉这个规定会产生什么样的后果?既然指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质是否也适用于
5、有理数指数幂呢?活动:学生回想初中学习的情形,结合自己的学习体会回答,根据零的整数指数幂的意义和负整数指数幂的意义来类比,把正分数指数幂的意义与负分数指数幂的意义融合起来,与整数指数幂的运算性质类比可得有理数指数幂的运算性质,教师在黑板上板书,学生合作交流,以具体的实例说明a0的必要性,教师及时作出评价.讨论结果:负整数指数幂的意义是:a-n=(a0),nN*.既然负整数指数幂的意义是这样规定的,类比正数的正分数指数幂的意义可得正数的负分数指数幂的意义.规定:正数的负分数指数幂的意义是a=(a0,m,nN*,n1).规定:零的分数指数幂的意义是:零的正分数次幂等于零,零的负分数指数幂没有意义.
6、教师板书分数指数幂的意义.分数指数幂的意义就是:正数的正分数指数幂的意义是a=(a0,m,nN*,n1),正数的负分数指数幂的意义是a=(a0,m,nN*,n1),零的正分数次幂等于零,零的负分数指数幂没有意义.若没有a0这个条件会怎样呢?如(-1)=3-1=-1,(-1)=6(-1)2=1具有同样意义的两个式子出现了截然不同的结果,这只说明分数指数幂在底数小于零时是无意义的.因此在把根式化成分数指数时,切记要使底数大于零,如无a0的条件,比如式子3a2=|a|,同时负数开奇次方是有意义的,负数开奇次方时,应把负号移到根式的外边,然后再按规定化成分数指数幂,也就是说,负分数指数幂在有意义的情况
7、下总表示正数,而不是负数,负数只是出现在指数上.规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数.有理数指数幂的运算性质:对任意的有理数r,s,均有下面的运算性质:(1)aras=ar+s(a0,r,sQ),(2)(ar)s=ars(a0,r,sQ),(3)(ab)r=arbr(a0,b0,rQ).我们利用分数指数幂的意义和有理数指数幂的运算性质可以解决一些问题,来看下面的例题.应用示例思路1例1求值:8;25()-5;().活动:教师引导学生考虑解题的方法,利用幂的运算性质计算出数值或化成最简根式,根据题目要求,把底数写成幂的形式,8写成23,25写成52, 写成2-1,写
8、成()4,利用有理数幂的运算性质可以解答,完成后,把自己的答案用投影仪展示出来.解:8=(23)=2=22=4;25=(52)=5=5-1=;()-5=(2-1)-5=2-1(-5)=32;()=()=()-3=.点评:本例主要考查幂值运算,要按规定来解.在进行幂值运算时,要首先考虑转化为指数运算,而不是首先转化为熟悉的根式运算,如8=4.例2用分数指数幂的形式表示下列各式.a3;a2;(a0).活动:学生观察、思考,根据解题的顺序,把根式化为分数指数幂,再由幂的运算性质来运算,根式化为分数指数幂时,要由里往外依次进行,把握好运算性质和顺序,学生讨论交流自己的解题步骤,教师评价学生的解题情况,
9、鼓励学生注意总结.解:a3=a3a=a=a;a2=a2a=a=a;=(aa)=(a)=a.点评:利用分数指数幂的意义和有理数指数幂的运算性质进行根式运算时,其顺序是先把根式化为分数指数幂,再由幂的运算性质来运算.对于计算的结果,不强求统一用什么形式来表示,没有特别要求,就用分数指数幂的形式来表示,但结果不能既有分数指数又有根式,也不能既有分母又有负指数.例3计算下列各式(式中字母都是正数):(1)(2ab)(-6ab)(-3ab);(2)(mn)8.活动:先由学生观察以上两个式子的特征,然后分析,四则运算的顺序是先算乘方,再算乘除,最后算加减,有括号的先算括号内的,整数幂的运算性质及运算规律扩
10、充到分数指数幂后,其运算顺序仍符合我们以前的四则运算顺序,再解答,把自己的答案用投影仪展示出来,相互交流,其中要注意到(1)小题是单项式的乘除运算,可以用单项式的乘除法运算顺序进行,要注意符号,第(2)小题是乘方运算,可先按积的乘方计算,再按幂的乘方进行计算,熟悉后可以简化步骤.解:(1)原式=2(-6)(-3)ab=4ab0=4a;(2)(mn)8=(m)8(n)8=mn=m2n-3=.点评:分数指数幂不表示相同因式的积,而是根式的另一种写法.有了分数指数幂,就可把根式转化成分数指数幂的形式,用分数指数幂的运算法则进行运算了.本例主要是指数幂的运算法则的综合考查和应用.变式训练求值:(1)3
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 课时 指数 运算
链接地址:https://www.31ppt.com/p-4871028.html