分式教案11.doc
《分式教案11.doc》由会员分享,可在线阅读,更多相关《分式教案11.doc(49页珍藏版)》请在三一办公上搜索。
1、1.1 分 式1.1.1分式的概念 (第1课时)主备人:余文勇 参与人 :姚明军 陈正国 覃礼新教学目标1 了解分式的概念。2 通过具体情境感受分数的基本性质并类比得出分式的基本性质。3理解分式有意义的条件。教学重点、难点:重点:分式的概念和性质 难点:理解分式的性质。教学过程一创设情境,导入新课探究: 1把三个一样的苹果分给4位小朋友,每位小朋友分到多少苹果?你怎么分给他们? (交流讨论)(1)每位小朋友分(2)分法: 每个苹果切成四个相等的小块,共12块,每人分3块,这3块占一个苹果的 为了每个小朋友吃起来方便,每个苹果切成8块,共24块,每人分6块,这六块占一个苹果的。想想这两种分法分得
2、的是否一样多?(,即:)由此表明了什么? 分数的分子和分母都乘以或除以一个不等于零的数,分数的值不变。分数的分子与分母约去共因数,分数的值不变。这就是分数的基本性质。2 (1)把上面问题变为:把3个一样的苹果分给n(m0)位小朋友,每位小朋友分到多少苹果?用除法表示:,用分数表示为:,相等吗?()这里的n可以是实数吗?(n不能为0)(2) 有什么区别?(后者分母含有字母)我们把前者叫分数,后者叫分式,什么叫分式呢?分式有没有和分数一样的性质?这节课我们来学习-分式的基本性质。(板书课题)二 合作交流,探究新知1 分式的概念填空:(1 )如果小王用a元人民币买了b袋相同的瓜子,那么每袋瓜子的价格
3、是_元。(2)一个梯形木板的面积是6 ,如果梯形上底是am,下底是bm,那么这个梯形的高是_m.(3) 两块面积分别为a亩,b亩的稻田m kg,n kg,这两块稻田平均每亩产稻谷_kg.观察多项式:这些代数式有什么共同点特点?(分子分母都是整式,分母含有字母)一般地,如果f、g分别表示两个整式,并且g中含有字母,那么代数式叫分式。说明:分式的分子分母一般是多项式,单项式可以看成是只有一项的多项式。分母一定含有字母。2 分式的基本性质思考: 相等吗?相等吗?如果a0, 那么,只要都意义,那么。你认为分式和分数具有相同的性质吗?分式的分子和分母都乘以或除以一个不等非零多项式,分式值不变。分式的分子
4、与分母约去共因式,分式的值不变。用式子表示为:设h0,则3 分式的值为零的条件和分式有意义的条件例1 求分式的值,(1)x=3, (2)x= 思考:(1)要是分式的值为零,x应等于多少?要使分式的值为零,x应等于多少?分式值为零的条件是什么?(分子为零,分母不等于零)例2 当x取什么值时,分式(1)无意义,(2)有意义。分式有意义的条件是什么?(分母不等于零)三 课堂练习,巩固提高 P 3 四 反思小结,巩固提高 这节课你有什么收获?学习了分式的概念,分式的基本性质,分式值为零的条件分式有意义的条件。五 作业 P6 A 1,2 B 1 1.1.2分式基本性质和约分(第2课时)教学目标1 进一步
5、掌握分式基本性质的应用。 2 通过探索掌握分式符号的变换法则。教学重点、难点: 分式基本性质的应用和分式的变号法则教学过程一创设情境,导入新课 1 复习:分式基本性质是什么?用式子怎么表示?分式的分子分母同乘以一个非零的多项式,分式值不变。2 分式的值为零的条件是什么?分式有意义的条件是什么?分式值为零的条件:分子为零,分母不为零。分式有意义的条件是:分母不为零。二 合作交流,探究新知1 分式基本性质的应用 分式的约分-约去分子分母的公因式而把分式化简例1 把下列分式中分子分母的公因式约去(1);(2)分析:先要找到公因式,对于分子分母的公因式是什么?然后把分子分母分别写成公因式乘以一个适当的
6、式子。解(1).如果分子分母是多项式,还要注意先分解因式,再找公因式。(2).练一练:把下列分式中分子分母的公因式约去(1);(2);(3);(4).分式符号的变换思考:(1) (2)估计学生会想到用除法法则来找到他们的关系,但还要引导学生利用分式的基本性质来找到他们的关系。,因此:,因此,从上面的变换你发现了什么规律?请用你的话来表达?分式的符号规律-分式的分子、分母、分式本身三个符号任意改变两个,值不变。练一练: P 6 练习题3 下面变形是否正确?为什么?如果不正确应怎样改正?三、 反思小结,拓展提高 这几课你有什么收获?1感受了分式基本性质的应用,2 会变换分式的符号。四、作业P 7
7、A 3、4、5 6 1.2分式的乘法和除法1.2.1分式的乘除法(第3课时)教学目标1 通过类比得出分式的乘除法则,并会进行分式乘除运算。2 了解约分、最简分式的概念,会对分式的结果约分。重点、难点重点:分式乘除法则及运用分式乘除法则进行计算 难点:分式乘除法的计算教学过程一创设情境,导入新课1 分数的乘除法复习计算:(1) 分数乘法、除法运算的法则是什么?2 类比:把上面的分数改为分式:()怎样计算呢?这节课我们来学习-分式的乘除法(板书课题)二 合作交流,探究新知1 分式的乘除法则你能用语言表达分式的乘除法则吗?分式乘分式,把分子乘分子,分母乘分母,分别作为积的分子、分母,然后约去分子、分
8、母的公因式。 分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。2 分式乘除法则的初步应用及分式的约分和最简分式的概念例1 计算: 学生独立完成,教师点评点评:(1)分式的乘法,可以先把分子、分母分别相乘再约去分子、分母的公因式,这叫约分。分子、分母没有公因式的分式叫最简分式。 (2)分式的除法运算实际上是转化为分式的乘法运算,这里体现了“转化”的思想。三 应用迁移,巩固提高1 需要分解因式才能约分的分式乘除法例2 计算:(1)点评:如果分子、分母含有多项式因式,因先分解因式,然后按法则计算。2 分式结果的化简及化简的意义例3 化简:点评:在进行分式运算的时候,一般要对要对结果化简,为
9、什么要对分式的结果化简呢?请你先完成下面问题:例4 当x=5时,求的值。现在你知道为什么要对分式的结果化简了吗?(把分式的结果先化简,可以使求分式的值变得简便)四 课堂练习,巩固提高1计算:2化简:3下面约分对吗?如果不对,指出错误原因,并改正4 有这样一道题“计算:甲同学把x=2009错抄成2900”,但他的计算结果是正确的,你说这是怎么回事?五 反思小结,拓展提高 六、作业:P 12 A组 1, 3 B 41.2.2分式的乘方(第4课时)教学目标1 探索分式乘方的运算法则。 2 熟练运用乘方法则进行计算。重点、难点重点:分式乘方的法则和运算。难点:分式乘方法则的推导过程的理解及利用分式乘方
10、法则进行运算。教学过程一创设情境,导入新课1 复习:分式乘除法则是什么?2什么叫最简分式?3 取一条长度为1个单位的线段AB,如图:第一步:把线段AB三等分,以中间一段为边作等边三角形,然后去掉这一段,就得到了由_条长度相等的线段组成的折线,每一段等于_,总长度等于_.第二步:把上述折线中的每一条重复第一步的做法,得到_,继续下去。情况怎么样呢?这节课我们来学习-分式的乘方。二 合作交流,探究新知。 分式乘方的法则 分式乘方等于分子、分母分别乘方。三 应用迁移,巩固提高1 分式乘方公式的应用例1 计算:强调每一步运用了哪些公式。2 除法形式改为分式形式进行计算。例2 计算:。强调:除法形式改为
11、分式,利用分式的运算性质进行计算给计算带来了方便。3 分式乘方与分式乘法、除法的综合运用。例3 计算:4 整体思想例4 已知:,求的值。四 课题练习,巩固提高 P 12 练习1,2 补充: 先化简,再求值。,其中x=1.五 反思小结,拓展提高 这几课你有什么收获?(1) 分式乘法法则 (2) 分式乘方法则与分式乘除运算法则综合运用时的顺序。六、作业:P 13 习题A 2; B 6 1.2分式的乘除法练习题(第5课时)一选择题1约简分式后得 A; B ; C ; D 2约简分式后得 Aa+b; Bab; Cab; Da+b3分式,中,最简分式有 A1个; B2个; C3个; D4个4计算,所得的
12、结果中,是分式的是 A只有; B有、; C只有; D不同以上答案5等于 A; Bb2x; C; D65(a+1)2等于 Aa2+2a+1; B5a2+10a+5; C5a21; D 5a257下列各式中,化简成最简分式后得的是 A; B ;C; D 8当x2时,化简的结果是 A1; B1; C1或1; D0来源:Z,xx,k.Com9若x等于它的倒数,则分式的值为 来源:学科A1; B5; C1或5; D或4二计算题12三先化简,再求值,其中a=,b=四已知y2x=0,求代数式的值五若=1,求x的取值范围来源:学*科*网Z*X*X*K1.3 整数指数幂1.3.1同底数幂的除法(第6课时)教学目
13、标1 通过探索归纳同底数幂的除法法则。2 熟练进行同底数幂的除法运算。3 通过计算机单位的换算,使学生感受数学应用的价值,提高学习学生的热情。重点、难点: 重 点:同底数幂的除法法则以及利用该法则进行计算。难 点:同底数幂的除法法则的应用教学过程一 创设情境,导入新课1 复习: 约分: , , 复习约分的方法2 引入(1)先介绍计算机硬盘容量单位: 计算机硬盘的容量最小单位为字节,1字节记作1B,计算机上常用的容量单位有KB,MB,GB,其中:1KB=B=1024B1000B, , (2)提出问题: 小明的爸爸最近买了一台计算机,硬盘容量为40GB,而10年前买的一台计算机,硬盘的总容量为40
14、MB,你能算出现在买的这台计算机的硬盘总容量是原来买的那台计算机总容量的多少倍吗? 提醒这里的结果,所以,如果把数字改为字母:一般地,设a0,m,n是正整数,且mn,则这是什么运算呢?(同底数的除法) 这节课我们学习-同底数的除法二 合作交流,探究新知1 同底数幂的除法法则 你能用语言表达同底数幂的除法法则吗? 同底数幂相除,底数不变,指数相减.2同底数幂的除法法则初步运用例1 计算:(1)(n是正整数),例2 计算:(1),(2),例3 计算:(1),(2)练一练 P 16 练习题 1,2 三 应用迁移,巩固提高例4 已知 ,则A=( ) 例5 计算机硬盘的容量单位KB,MB,GB的换算关系
15、,近视地表示成:1KB1000B,1MB1000KB,1GB1000MB(1) 硬盘总容量为40GB的计算机,大约能容纳多少字节?(2) 1个汉字占2个字节,一本10万字的书占多少字节?(3) 硬盘总容量为40GB的计算机,能容纳多少本10完字的书?一本10万字的书约高1cm,如果把(3)小题中的书一本一本往上放,能堆多高? 练一练 (与珠穆朗玛峰的高度进行比较。)1 已知求的值。 2 计算:四 反思小结,巩固提高 这节课你有什么收获?五 作业; 1 填空: (1) =_, (2) =_2 计算(1), (2), (3), (4), (5) (6)1.3.2 零次幂和负整数指数幂(第7、8课时
16、)教学目标1 通过探索掌握零次幂和负整数指数幂的意义。2 会熟练进行零次幂和负整数指数幂的运算。3 会用科学计数法表示绝对值较少的数。4 让学生感受从特殊到一般是数学研究的一个重要方法。教学重点、难点重点:零次幂和负整数指数幂的公式推导和应用,科学计数法表示绝对值绝对值较少的数。难点:零次幂和负整数指数幂的理解教学过程一 创设情境,导入新课1 同底数的幂相除的法则是什么?用式子怎样表示?用语言怎样叙述?2 这这个公式中,要求mn,如果m=n,mn,就会出现零次幂和负指数幂,如:,有没有意义?这节课我们来学习这个问题。二 合作交流,探究新知1 零指数幂的意义(1)从特殊出发:填空:思考:这两个式
17、子的意义是否一样,结果应有什么关系?因此:,同样:由此你发现了什么规律?一个非零的数的零次幂等于1.(2)推广到一般:一方面:,另一方面:启发我们规定:试试看:填空: , 。2 负整数指数幂的意义。(1)从特殊出发:填空: , (2)思考:的意义相同吗?因此他们的结果应该有什么关系呢?() 同样:, (3)推广到一般: (4)再回到特殊:当n=1是, 试试看: 2 若,则x=_,若,则x=_, 若,则x=_.3 科学计数法(1)用小数表示下列各数:。你发现了什么?( 10-n = )(2)用小数表示下列各数:思考:这些数的表示形式有什么特点?()叫什么计数法?(科学计数法)当一个数的绝对值很少
18、的时候,如:怎样用科学计数法表示呢?你能从上面问题中找到规律吗?试试看:用科学计数法表示:(1)0.00018, (2)0.00000405三 应用迁移,巩固提高例1 若,则x的取值范围是_,若,则y的取值范围是_.例2 计算:例4 把下列各式写成分式形式:例5 氢原子中电子和原子核之间的距离为:0.00 000 000 529厘米,用科学计数法把它写成为_.四 课堂练习,巩固提高 P 18 练习 1,2,3,4补充:三个数按由小到大的数序排列,正确的的结果是( )A ,B C , D五 反思小结,拓展提高 这节课你有什么收获?(1),(2),(3)科学计数法前两个至少点要注意条件,第三个知识
19、要点要注意规律。六、作业:P 21习题 A组2,3,4,5,1.3.3 整数指数幂的运算法则(第9课时)教学目标1 通过探索把正整数指数幂的运算法则推广到整数指数幂的运算法则;2 会用整数指数幂的运算法则熟练进行计算。重点、难点重点:用整数指数幂的运算法则进行计算。难点:指数指数幂的运算法则的理解。教学过程一 创设情境,导入新课1 正整数指数幂有哪些运算法则?(1)(m、n都是正整数);(2)(m、n都是正整数)(3), (4)(m、n都是正整数,a0)(5) (m、n都是正整数,b0)这些公式中的m、n都要求是正整数,能否是所有的整数呢?这5个公式中有没有内在联系呢?这节课我们来探究这些问题
20、.板书课题:整数指数幂的运算法则二 合作交流,探究新知1 公式的内在联系做一做 (1) 用不同的方法计算: , 解:; ,通过上面计算你发现了什么?幂的除法运算可以利用幂的乘法进行计算,分式的乘方运算可以利用积的乘方进行运算。,因此上面5个幂 的运算法则只需要3个就够了:1)(m、n都是正整数);(2)(m、n都是正整数)(3),2 正整数指数幂是否可以推广到整数指数幂做一做计算:, 解:(1)(2), 通过上面计算,你发现了什么?幂的运算公式中的指数m、n也可以是负数。也就是说,幂的运算公式中的指数m、n可以是整数,二不局限于正整数。我们把这些公式叫整数指数幂的运算法则。三 应用迁移,巩固提
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 分式 教案 11
链接地址:https://www.31ppt.com/p-4869243.html