定积分的简单应用参考教案.doc
《定积分的简单应用参考教案.doc》由会员分享,可在线阅读,更多相关《定积分的简单应用参考教案.doc(5页珍藏版)》请在三一办公上搜索。
1、定积分的简单应用教学目标:1、 进一步让学生深刻体会“分割、以直代曲、求和、逼近”求曲边梯形的思想方法;2、 让学生深刻理解定积分的几何意义以及微积分的基本定理;3、 初步掌握利用定积分求曲边梯形的几种常见题型及方法,以及利用定积分求一些简单的旋转体的体积;4、 体会定积分在物理中应用(变速直线运动的路程、变力沿直线做功)。教学重点: 几种曲边梯形面积的求法。教学难点: 定积分求体积以及在物理中应用。教学过程:一、问题情境1、求曲边梯形的思想方法是什么?2、定积分的几何意义是什么?3、微积分基本定理是什么? 二、数学应用 (一)利用定积分求平面图形的面积例1、求曲线与直线轴所围成的图形面积。
2、答案: 变式引申:1、求直线与抛物线所围成的图形面积。xyoy=x2+4x-3答案:2、求由抛物线及其在点M(0,3)和N(3,0)处的两条切线所围成的图形的面积。 略解:,切线方程分别为、,则所求图形的面积为3、求曲线与曲线以及轴所围成的图形面积。 略解:所求图形的面积为xxOy=x2ABC4、在曲线上的某点A处作一切线使之与曲线以及轴所围成的面积为.试求:切点A的坐标以及切线方程. 略解:如图由题可设切点坐标为,则切线方程为,切线与轴的交点坐标为,则由题可知有,所以切点坐标与切线方程分别为总结:1、定积分的几何意义是:、轴所围成的图形的面积的代数和,即.因此求一些曲边图形的面积要可以利用定
3、积分的几何意义以及微积分基本定理,但要特别注意图形面积与定积分不一定相等,如函数的图像与轴围成的图形的面积为4,而其定积分为0.2、求曲边梯形面积的方法与步骤:(1) 画图,并将图形分割为若干个曲边梯形;(2) 对每个曲边梯形确定其存在的范围,从而确定积分的上、下限;(3) 确定被积函数;(4) 求出各曲边梯形的面积和,即各积分的绝对值的和。3、几种常见的曲边梯形面积的计算方法:(1)型区域:由一条曲线与直线以及轴所围成的曲边梯形的面积:(如图(1);由一条曲线与直线以及轴所围成的曲边梯形的面积:(如图(2);yabxyabxyabx由两条曲线与直线所围成的曲边梯形的面积:(如图(3);图(1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 积分 简单 应用 参考 教案
链接地址:https://www.31ppt.com/p-4865996.html