1.1.2导数的概念教案.doc
《1.1.2导数的概念教案.doc》由会员分享,可在线阅读,更多相关《1.1.2导数的概念教案.doc(3页珍藏版)》请在三一办公上搜索。
1、1.1.2导数的概念教学目标1了解瞬时速度、瞬时变化率的概念;2理解导数的概念,知道瞬时变化率就是导数,体会导数的思想及其内涵;来源:学科网3会求函数在某点的导数教学重点:瞬时速度、瞬时变化率的概念、导数的概念; 教学难点:导数的概念教学过程:一创设情景(一)平均变化率来源:Z.xx.k.Com(二)探究:计算运动员在这段时间里的平均速度,并思考以下问题:运动员在这段时间内使静止的吗?你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程:如图是函数h(t)= -4.9t2+6.5t+10的图像,结合图形可知,hto 所以,虽然运动员在这段时间里的平均速度为,但实际情况是运动员仍然运动,并
2、非静止,可以说明用平均速度不能精确描述运动员的运动状态二新课讲授1瞬时速度我们把物体在某一时刻的速度称为瞬时速度。运动员的平均速度不能反映他在某一时刻的瞬时速度,那么,如何求运动员的瞬时速度呢?比如,时的瞬时速度是多少?考察附近的情况:来源:学科网思考:当趋近于0时,平均速度有什么样的变化趋势?结论:当趋近于0时,即无论从小于2的一边,还是从大于2的一边趋近于2时,平均速度都趋近于一个确定的值从物理的角度看,时间间隔无限变小时,平均速度就无限趋近于史的瞬时速度,因此,运动员在时的瞬时速度是为了表述方便,我们用表示“当,趋近于0时,平均速度趋近于定值”小结:局部以匀速代替变速,以平均速度代替瞬时
3、速度,然后通过取极限,从瞬时速度的近似值过渡到瞬时速度的精确值。2 导数的概念从函数y=f(x)在x=x0处的瞬时变化率是:我们称它为函数在出的导数,记作或,即 说明:(1)导数即为函数y=f(x)在x=x0处的瞬时变化率 (2),当时,所以三典例分析例1(1)求函数y=3x2在x=1处的导数.分析:先求f=y=f(x)-f()=6x+(x)2再求再求解:法一(略) 法二:(2)求函数f(x)=在附近的平均变化率,并求出在该点处的导数 解: 例2(课本例1)将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热,如果第时,原油的温度(单位:)为,计算第时和第时,原油温度的瞬时变化率,并说明它们的意义解:在第时和第时,原油温度的瞬时变化率就是和根据导数定义,所以同理可得:来源:学科网在第时和第时,原油温度的瞬时变化率分别为和5,说明在附近,原油温度大约以的速率下降,在第附近,原油温度大约以的速率上升注:一般地,反映了原油温度在时刻附近的变化情况四课堂练习来源:学科网ZXXK1质点运动规律为,求质点在的瞬时速度为2求曲线y=f(x)=x3在时的导数3例2中,计算第时和第时,原油温度的瞬时变化率,并说明它们的意义五回顾总结1瞬时速度、瞬时变化率的概念2导数的概念六布置作业
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 1.1 导数 概念 教案
链接地址:https://www.31ppt.com/p-4863660.html