《频率合成器》PPT课件.ppt
《《频率合成器》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《频率合成器》PPT课件.ppt(53页珍藏版)》请在三一办公上搜索。
1、第三节 频率合成器,第一节 概述,第二节 自动相位控制电路(锁相环路),第10章 反馈控制电路,教学要求,了解反馈控制电路的三种基本形式及工作原理。掌握锁相环路的系统组成、电路模型、环路方程和工作原理。掌握环路跟踪特性的分析方法和结论。了解集成锁相环路的电路原理及其应用。掌握频率合成器的概念、电路组成、工作原理和性能指标。了解DDS频率合成器的工作原理和性能特点。,10.1 概述,为了提高通信和电子系统的性能指标,或者实现某些特定的要求,必须采用自动控制方式。由此,各种类型的反馈控制电路便应运而生了。,反馈控制电路可分为三类:,自动增益控制(Automatic Gain Control,简称A
2、GC),自动频率控制(Automatic Frequency Control,简称AFC),自动相位控制(Automatie Phase Control,简称APC),自动相位控制电路又称为锁相环路(Phase Locked Loop,简称PLL),是应用最广的一种反馈控制电路。,基本原理与分析方法,在反馈控制电路里,比较器、控制信号发生器、可控器件、反馈网络四部分构成了一个负反馈闭合环路。,根据参考信号的不同情况,反馈控制电路的工作情况有两种。,(1)参考信号xr(t)不变,恒定为xro,(2)参考信号xr(t)变化,数学模型,将反馈控制电路近似作为一个线性系统分析。由于直接采用时域分析法比
3、较复杂,所以采用复频域分析法,根据反馈控制电路的组成方框图,可画出用拉氏变换表示的数学模型,图中Xr(s),Xe(s),Xc(s),Xi(s),Xy(s)和Xf(s)分别是,xr(t),xe(t),xc(t),xi(t),xy(t)和xf(t)的拉氏变换。,比较器输出的误差信号xe(t)通常与xr(t)和xf(t)的差值成正比,设比例系数为kp,则有,xe(t)=kpxr(t)-xf(t),写成拉氏变换式,有Xe(s)=kpXr(s)-Xf(s),可控器件作为线性器件,有 xy(t)=kc xc(t),kc是比例系数。,写成拉氏变换式,有Xy(s)=kc Xc(s),实际电路中一般都包括滤波器
4、,其位置可归纳在控制信号发生器或反馈网络中,所以将这两个环节看作线性网络。其传递函数分别为,闭环传递函数,误差传递函数,自动增益控制电路,自动增益控制(AGC)电路的主要作用:使设备的输出电平保持为一定的数值。因此也称自动电平控制(ALC)电路。,设输入信号振幅为Ui,输出信号振幅为Uy,可控增益放大器增益为Ag(uc),是控制信号uc的函数,则有 Uy=Ag(uc)Ui,自动频率控制(AFC)电路,AFC电路也是一种反馈控制电路,控制对象是压控振荡器。其主要作用是自动控制振荡器的振荡频率,保证振荡器的振荡频率稳定。,频率比较器的输出误差电压ue与两个输入信号的频率差有关,而与这两个信号的幅度
5、无关,ue为,ue=kp(r-y),式中,kp在一定的频率范围内为常数,实际上就是鉴频跨导。,常用的频率比较电路有两种形式:一是鉴频器,二是混频-鉴频器。,锁相环路(PLL),锁相环路(Phase locked loop缩写PLL)是一种相位自动控制电路,被控量为相位,被控对象为压控振荡器。其作用是实现环路输出信号与输入信号之间无误差的频率跟踪,仅存在某一固定的相位差。,PLL电路广泛应用于:,一、锁相环的组成部件,PLL是一个相位负反馈系统,可对输入信号的频率与相位实施跟踪。,三个基本部分构成一个负反馈环:,PD,LF,VCO,10.2 自动相位控制电路(锁相环),1.鉴相器(PD),即,v
6、i(t)/i(t),vo(t)/o(t),vd(t)/e(t),正弦特性,三角波特性,锯齿波特性等,其中最基本的是正弦波特性,它可用一个模拟乘法器与低通滤波器串接而成。,鉴相特性的形式有许多种,如:,如果设环路输入信号:,PLL环输出的反馈信号:,经过相乘,并滤除和频分量,可得输出的误差电压为:,其中,e(t)为输入信号的瞬时相位差。,可得鉴相器的数学模型:,另外可看出:当e/6 时,,鉴相器,2.环路滤波器LF,环路滤波器具有低通特性,其主要作用是滤除鉴相器输出端的高频分量和噪声,vd(t)经LF后得到一个平均电压 vc(t)用来控制VCO的频率变化,常见的滤波器有以下几种形式。,vd(t)
7、,vc(t),RC积分滤波器,vd(t),vc(t),无源比例积分滤波器,vd(t),vc(t),有源比例积分滤波器,RC积分滤波器,传输函数:,无源比例积分滤波器,有源比例积分滤波器,如果将F(s)中的s用微分算子p替代,可写出滤波器的输出电压vc(t)与输入信号vd(t)之间的微分方程:,其中,为微分算子,由上式可得环路滤波器的电路模型如右图所示。,综上:,3.压控振荡器(VCO),压控振荡器:是瞬时频率 控制的振荡器。其控制特性可用压控特性曲线来描述,如右图所示。,K0:压控灵敏度,由于VCO的输出反馈到鉴相器,而从锁相环的控制作用来看,VCO对鉴相器起作用的不是其频率而是相位,故对上式
8、积分即可求出相位:,压控振荡器数学模型如右图所示。,二、锁相环路相位模型和基本方程,1.相位模型,将上述锁相环的三个基本部件的模型按环路组成框图联接起来,即可构成锁相环路相位模型,如下图所示:,2.基本方程,根据锁相环路相位模型,可得以相位形式表示的基本微分方程:,环路的微分方程为:,物理意义,(1)是鉴相器的输入信号与VCO输出信号之间的瞬时相位差;,(2)是控制相位差。它是 通过闭环逐级处理得到的相位控制量;,(3)相位控制方程描述了环路相位的动态平衡关系,即任何时刻,环路的瞬时相位差和控制相位差的代数和等于输入信号以相位 为参考的瞬时相位。,3.环路工作的定性分析,设输入信号为固定频率的
9、正弦信号(即 均为常量),由于,代入环路的微分方程可得:,左边第二项:,由以上分析可得:,结论:闭合环路中任何时刻满足:瞬时频差+控制频差=输入的固有频差,4.环路“锁定”的基本概念,(一)环路进入锁定状态的过程,当环路输入一个频率和相位不变的信号 时,根据以 为参考相位可得,根据环路方程可得,1、当环路闭合瞬间,则,无控制角频差,此时环路的瞬时角频差等于输入固有角频差。,2、随着时间t的增加,有控制电压产生,控制角频差就产生。随着控制角频差的增大,瞬时角频差就减小,二者之和等于输入固有角频差。,3、当控制角频差随着时间 t 的增加到等于输入固有角频差时,瞬时角频差为零,即。这时 是一固定值,
10、不随时间变化。若能一直保持下去,则认为进入锁定状态。,(二)环路进入锁定状态的特点,1、压控振荡器输出电压的角频率 等于输入信号角频率,即无剩余频差,。,2、环路锁定后,压控振荡器输出信号与输入信号之间只存在一个固定的稳态相位差,即剩余相位差 为一固定值。,3、环路处于锁定状态时,鉴相器的输出电压为直流,4、环路处于锁定状态时,因为 为直流,则,式中,为环路的直流总增益,单位。,三、锁相环路的工作原理,设压控振荡器的固有振荡频率为0,而当环路闭合瞬间外输入信号角频率i与0即不相同也不相干,则鉴相器输出的差拍电压为:,失锁状态,如果:环路固有角频差 环路低通滤波器的通频带,则差拍电压 将被滤除,
11、而不能形成控制电压,压控振荡器输出角频率 不变化即,则,即:环路的瞬时频差=固有频差环路此时处于失锁状态。,锁定状态,如果 十分接近,即固有频差,则差拍电压 不会被环路滤波器滤除而形成控制电压,去控制压控振荡器,VCO产生中心频率为 的调频信号,VCO的瞬时振荡频率 将以 为中心在一定范围内来回摆动,即环路产生了控制频差,此时鉴相器输出电压是一个较小的直流电压,环路进入锁定状态。,牵引捕捉状态,当 介于上述两者之间时,如果VCO的瞬时频率 围绕 为中心摆动的范围小,至使 不可能摆动到 处时,环路不能立即入锁。此时VCO输出的调频波,其调制频率就是差拍频率,与输入信号 经鉴相器PD 鉴相,输出一
12、个正弦波与调频波的差拍电压:,如果令:,另有,其中,跟踪状态,例如:,则,四、锁相环性能分析,1.同步带宽,设环路已处于锁定状态,当缓慢改变输入信号频率使固有频差值向正或负方向逐步增大时,由于环路的自身调节作用,能够维持环路锁定的最大频差 称为环路同步带,记作。由于环路鉴频特性对零点是对称的,因此同步带相对于也是对称的。,2.捕捉带宽,设锁相环路处于失锁状态,改变 使固有频差 减少,环路能够经牵引捕获而入锁的最大固有频差值 称为环路捕捉带。通常。,3.稳态相差e(),环路处于锁定状态时,存在着的固定相差称为稳态相位误差e()。,由方程:,环路锁定意味着瞬时频差为零,即,此时,式中,为环路直流总
13、增益,其值增大可使 减少。,4锁相环性能特点,锁相环路用作调频信号解调时,与普通鉴频器相比较,有低门限信噪比特性。这是因为环路有反馈控制作用,跟踪相位差小,降低了鉴相特性的非线形影响,从而改善了门限效应。,(1)环路在锁定状态下无剩余频差,锁相环路对输入的固定基准频率锁定后,压控振荡器输出频率与基准频率的频差为零。环路输出可做到无剩余频差存在,是一个理想的频率控制系统。,(2)锁相环有良好的窄带特性,锁相环具有窄带特性,当压控振荡器频率锁定在输入频率上时,仅位于输入信号频率附近的干扰成分能以低频干扰的形式进入环路,而绝大多数的干扰会受到环路低通滤波器的抑制,从而减少了对压控振荡器的影响。,(3
14、)良好的跟踪特性,VCO的输出频率可以跟踪输入信号的变化,表现出良好的跟踪特性。在接收有多普勒频移的动目标时,这种特性尤为重要。,(4)低门限特性,锁相环的典型应用,1.锁相倍频,在锁相环路的反馈通道中插入分频器就可构成锁相倍频电路。如图:,当环路锁定时,鉴相器两输入信号频率相等。即有:,式中:N为分频器的倍频比。,2.锁相分频,在锁相环路中插入倍频器就可构成锁相分频电路。如图所示:,当环路锁定时:,式中:N为倍频器的倍频次数。,3.锁相混频器,设混频器的本振信号频率为L,在Lo时混频器的输出频率为(L-o),经差频放大器后加到鉴相器上。,当环路锁定时,4.频率合成器,频率合成器是利用一个标准
15、信号源的频率来产生一系列所需频率的技术。锁相环路加上一些辅助电路后,就能容易地对一个标准频率进行加、减、乘、除运算而产生所需的频率信号,且合成后的信号频率与标准信号频率具有相同的长期频率稳定度及具有较好的频率纯度,如果结合单片微机技术,可实现自动选频和频率扫描。,锁相式单环频率合成器基本组成如下图所示:,当环路锁定后,鉴相器两路输入频率相等,即:,当N 改变时,输出信号频率相应为fi 的整数倍变化。,环C,例:下图为三环式频率合成器方框图,已知:,求输出信号频率范围及频率间隔。,环A,环B,解:,而,而环路C为混频环,即当环路锁定时:,有,当NA=300,NB=351时,,当NA=301,NB
16、=351时,,因此频率间隔:,而当=399,=397时输出频率最高。,所以,合成器的频率范围为:(35.440.099)MHz,5.锁相环调频电路,普通的直接调频电路中,振荡器的中心频率稳定度较差,而锁相调频电路能得到中心频率稳定度很高的调频信号,锁相环调频电路如下图所示。环路滤波器的带宽必须很窄,截至频率应小于调制信号的频率。,当调制信号为锯齿波时,可输出扫频信号。当调制信号为数字脉冲时,可产生移频键控调制(FSK信号)。,调制信号作为VCO控制电压的一部分使其频率产生相应的变化,由此在输出端得到已调频信号。,6.锁相解调电路,(1)调频波解调,用锁相环实现调频波解调,如果将环路的频带设计的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 频率合成器 频率 合成器 PPT 课件
链接地址:https://www.31ppt.com/p-4862881.html