毕业设计论文基于PWM控制直流调速系统的设计.doc
《毕业设计论文基于PWM控制直流调速系统的设计.doc》由会员分享,可在线阅读,更多相关《毕业设计论文基于PWM控制直流调速系统的设计.doc(20页珍藏版)》请在三一办公上搜索。
1、基于PWM控制直流调速系统的设计基于PWM控制直流调速系统的设计摘要:本文基于PWM的双闭环直流调速系统进行了研究,并设计出应用于直流电动机的双闭环直流调速系统。首先描述了变频器的发展历程,提出了PWM调速方法的优势,指出了未来PWM调速方法的发展前景,点出了研究PWM调速方法的意义。应用于直流电机的调速方式很多,其中以PWM变频调速方式应用最为广泛,而PWM变频器中,H型PWM变频器性能尤为突出,作为本次设计的基础理论,本文将对PWM的理论进行详细论述。在此基础上,本文将做出SG3525单片机控制的H型PWM变频调速系统的整体设计,然后对各个部分分别进行论证,力图在每个组成单元上都达到最好的
2、系统性能。关键词:直流调速 ;双闭环 ;PWM ;SG3525 ;直流电机引言:目前,随着大功率电力电子器件的迅速发展,交流变频调速技术已日臻成熟并日渐成为实际应用的主流,但这并不意味着传统的直流调速技术已经完全退出了实际应用的舞台。相反,近几年交流变频调速在控制精度的提高上遇到了瓶颈,于是直流调速的优势就显现了出来。直流调速仍然是目前最可靠,精度最高的调速方法。譬如在对控制精度有较高要求的造纸,转台,轮机定位等系统中仍离不开直流调速装置,因此加强对直流调速系统的研究还是很有必要的。鉴于直流调速系统在国民经济和工农业生产以及国防事业中的重要作用,有必要对直流调速系统作进一步的研究和开发。1 系
3、统设计的技术要求1)直流电动机:型号:DJ15功率:485W电枢电压:220V电枢电流:1.2A额定转数:1600rpm2)调速范围:1-12003)起动时超调量:电流超调量:;转速超调量: 2 系统设计的整体结构3系统设计3.1设计方案的选定与说明3.1.1选择PWM控制直流调速系统的理由PWM系统的优越性 :2)开关频率高,电流容易连续,谐波少,电机损耗及发热都较小。3)低速性能好,稳速精度高,调速范围广,可达到1:10000左右。4)如果可以与快速响应的电动机配合,则系统频带宽,动态响应快,动态抗扰能力强。5)功率开关器件工作在开关状态,导通损耗小,当开关频率适当时,开关损耗也不大,因而
4、装置效率较高。 变频调速很快为广大电动机用户所接受,成为了一种最受欢迎的调速方法,在一些中小容量的动态高性能系统中更是已经完全取代了其他调速方式。由此可见,变频调速是非常值得自动化工作者去研究的。在变频调速方式中,PWM调速方式尤为大家所重视,这是我们选取它作为研究对象的重要原因3.1.2选择IGBT的H桥型主电路的理由H型PWM变换器具备电流连续、电动机四象限运行、无摩擦死区、低速平稳性好优点。本次设计以H型PWM直流控制器为主要研究对象。3.1.3采用转速电流双闭环的理由闭环系统:具有抑制干扰能力,对元件特性变化不敏感,并能改善系统响应特性。双闭环调速系统:一是能够快速启动制动;二是能够快
5、速克服负载、电网等干扰。3.2 PWM控制直流调速系统主电路设计3.2.1 主电路结构设计 图1-1H型双极式可逆PWM变换器:双极式可逆PWM变换器的主电路中四个电力晶体管分为两组,VT1和VT4为一组,VT2和VT3为一组。同一组中两个电力晶体管的基极驱动电压波形相同,即,VT1和VT4同时导通和关断;,VT2和VT3同时导通和关断。而且,和,相位相反,在一个开关周期内VT1,VT4和VT2,VT3两组晶体管交替地导通和关断,变换器输出电压在一个周期内有正负极性变化,这是双极式PWM变换器的特征。电压极性的变化,使得电枢回路电流的变化存在两种情况如图1-2所示图1-2 H型双极式PWM变换
6、器电压和电流波形 (a)电动机负载较重时 (b)电动机负载较轻时如果电动机的负载较重,平均负载电流较大,在时,和为正,VT1和VT4饱和导通;而和为负,VT2和VT3截止。这时,加在电枢AB两端,电枢电流沿回路流通(见图1-2(b),电动机处于电动状态。在时,和为负,VT1和VT4截止;和为正,在电枢电感释放储能的作用下,电枢电流经二极管VD2和VD3续流,在VD2和VD3上的正向压降使VT2和VT3的c-e极承受反压而不能导通,电枢电流沿回路2流通,电动机仍处于电动状态。有关参量波形图示于图1-2(a)。如果电动机负载较轻,平均电流小,在续流阶段电流很快衰减到零,即当时,。于是在时,VT2和
7、VT3的c-e极两端失去反压,并在负的电源电压()和电动机反电动势E的共同作用下导通,电枢电流反向,沿回路3流通,电动机处于反接制动状态。在()时,和变负,VT2和VT3截止,因电枢电感的作用,电流经VD1和VD4续流,使VT1和VT4的c-e极承受反压,虽然和为正,VT1和VT4也不能导通,电流沿回路4流通,电动机工作在制动状态。当时,VT1和VT4才导通,电流又沿回路1流通。有关参量的波形示于图1-2(b)。这样看来,双极式可逆PWM变换器与具有制动作用的不可逆PWM变换器的电流波形差不多,主要区别在于电压波形;前者,无论负载是轻还是重,加在电动机电枢两端的电压都在和之间变换;后者的电压只
8、在和0之间变换。这里并未反映出“可逆”的作用。实现电动机制可逆运行,由正、负驱动电压的脉冲宽窄而定。当正脉冲较宽时, ,电枢两端的平均电压为正,在电动运行时电动机正转;当正脉冲较窄时,平均电压为负,电动机反转。如果正、负脉冲宽度相等,平均电压为零,电动机停止运转。因为双极式可逆PWM变换器电动机电枢两端的平均电压为 若仍以来定义PWM电压的占空比,则双极式PWM变换器的电压占空比为。改变即可调速,的变化范围为。为正值,电动机正转;为负值,电动机反转;,电动机停止运转。在时,电动机虽然不动,但电枢两端的瞬时电压和流过电枢的瞬时电流都不为零,而是交变的。这个交变电流的平均值为零,不产生平均转矩,徒
9、然增加了电动机的损耗,当然是不利的。但是这个交变电流使电动机产生高频微振,可以消除电动机正、反向切换时的静摩擦死区,起着所谓“动力润滑”的作用,有利于快速切换。 图1-3 H桥主电路 3.2.2泵升电路 图1-4当脉宽调速系统的电动机转速由高变低时(减速或者停车),储存在电动机和负载转动部分的动能将变成电能,并通过PWM变换器回馈给直流电源。当直流电源功率二极管整流器供电时,不能将这部分能量回馈给电网,只能对整流器输出端的滤波电容器充电而使电源电压升高,称作“泵升电压”。过高的泵升电压会损坏元器件,因此必须采取预防措施,防止过高的泵升电压出现。可以采用由分流电阻R和开关元件(电力电子器件)VT
10、组成的泵升电压限制电路,如图1-4所示。当滤波电容器C两端的电压超过规定的泵升电压允许数值时,VT导通,将回馈能量的一部分消耗在分流电阻R上。这种办法简单实用,但能量有损失,且会使分流电阻R发热,因此对于功率较大的系统,为了提高效率,可以在分流电路中接入逆变,把一部分能量回馈到电网中去。3.3 PWM控制直流调速系统控制电路设计3.3.1 PWM信号发生器PWM信号发生器以集成可调脉宽调制器SG3525为核心构成,他把产生的电压信号送给H桥中的四个IGBT。通过改变电力晶体管基极控制电压的占空比,而达到调速的目的。其控制电路如图1-5所示.图1-5PWM控制电路3.3.2 SG3525芯片的主
11、要特点SG3525为美国Silicon General公司生产的专用PWM控制集成电路,如图1-6所示。图1-6SG3525芯片的内部结构它采用恒频脉宽调制控制方案,其内部包含有精密基准源、锯齿波振荡器、误差放大器、比较器、分频器和保护电路等。调节Ur的大小,在A、B两端可输出两个幅度相等、频率相等、相位相互错开180度、占空比可调的矩形波(即PWM信号)。它适用于各开关电源、斩波器的控制。输出级采用推挽输出,双通道输出,占空比0-50%可调.每一通道的驱动电流最大值可达200mA,灌拉电流峰值可达500mA。可直接驱动功率MOS管,工作频率高达400KHz,具有欠压锁定、过压保护和软启动振荡
12、器外部同步、死区时间可调、PWM琐存、禁止多脉冲、逐个脉冲关断等功能。该电路由基准电压源、震荡器、误差放大器、PWM比较器与锁存器、分相器、欠压锁定输出驱动级,软软启动及关断电路等组成,可正常工作的温度范围是0-700C。基准电压为5.1 V士1%,工作电压范围很宽,为8V到35V.3.3.3 SG3525的工作原理 SG3525内置了5.1V精密基准电源,微调至 1.0%,在误差放大器共模输入电压范围内,无须外接分压电组。SG3525还增加了同步功能,可以工作在主从模式,也可以与外部系统时钟信号同步,为设计提供了极大的灵活性。在CT引脚和Discharge引脚之间加入一个电阻就可以实现对死区
13、时间的调节功能。由于SG3525内部集成了软启动电路,因此只需要一个外接定时电容。 SG3525的软启动接入端(引脚8)上通常接一个5 的软启动电容。上电过程中,由于电容两端的电压不能突变,因此与软启动电容接入端相连的PWM比较器反向输入端处于低电平,PWM比较器输出高电平。此时,PWM琐存器的输出也为高电平,该高电平通过两个或非门加到输出晶体管上,使之无法导通。只有软启动电容充电至其上的电压使引脚8处于高电平时,SG3525才开始工作。由于实际中,基准电压通常是接在误差放大器的同相输入端上,而输出电压的采样电压则加在误差放大器的反相输入端上。当输出电压因输入电压的升高或负载的变化而升高时,误
14、差放大器的输出将减小,这将导致PWM比较器输出为正的时间变长,PWM琐存器输出高电平的时间也变长,因此输出晶体管的导通时间将最终变短,从而使输出电压回落到额定值,实现了稳态。反之亦然。 外接关断信号对输出级和软启动电路都起作用。当Shutdown(引脚10)上的信号为高电平时,PWM琐存器将立即动作,禁止SG3525的输出,同时,软启动电容将开始放电。如果该高电平持续,软启动电容将充分放电,直到关断信号结束,才重新进入软启动过程。注意,Shutdown引脚不能悬空,应通过接地电阻可靠接地,以防止外部干扰信号耦合而影响SG3525的正常工作。 欠电压锁定功能同样作用于输出级和软启动电路。如果输入
15、电压过低,在SG3525的输出被关断同时,软启动电容将开始放电。 此外,SG3525还具有以下功能,即无论因为什么原因造成PWM脉冲中止,输出都将被中止,直到下一个时钟信号到来,PWM琐存器才被复位。3.4 转速、电流双闭环设计3.4.1 转速、电流双闭环调速系统的组成图1-7所示为转速、电流双闭环调速系统的原理框图。为了实现转速和电流两种负图1-7转速电流双闭环调速系统反馈分别起作用,在系统中设置了两个调节器,分别调节转速和电流,二者之间实行串联连接。把转速调节器ASR的输出作为电流调节器ACR的输入,用电流调节器的输出去控制晶管整流的触发器。从闭环结构上看,电流调节环在里面,是内环;转速调
16、节环在外面,叫做外环。 为了获得良好的静、动态性能,双闭环调速系统的两个调节器通常都采用PI调节器。在图1-7中,标出了两个调节器输入输出电压的实际极性,它们是按照触发器GT的控制电压为正电压的情况标出的,而且考虑运算放大器的反相作用。通常,转速电流两个调节器的输出值是带限幅的,转速调节器的输出限幅电压为,它决定了电流调节器给定电压的最大值;电流调节器的输出限幅电压是,它限制了PWM装置输出电压的最大值。3.4.2 转速、电流双闭环调速系统的静特性 根据图1-6的原理图,可以很容易地画出双闭环调系统的静态结构图如图1-7所示。其中PI调节器用带限幅的输出特性表示,这种PI调节器在工作中一般存在
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 毕业设计 论文 基于 PWM 控制 直流 调速 系统 设计

链接地址:https://www.31ppt.com/p-4861991.html