毕业设计论文一维单原子链中点缺陷局域模的研究.doc
《毕业设计论文一维单原子链中点缺陷局域模的研究.doc》由会员分享,可在线阅读,更多相关《毕业设计论文一维单原子链中点缺陷局域模的研究.doc(32页珍藏版)》请在三一办公上搜索。
1、成绩(采用四级记分制)本科毕业论文(设计)题目:一维单原子链中点缺陷局域模的研究学生姓名 学 号 指导教师 院 系 物理学系 专 业 应用物理学 年 级 2007届 教务处制二一一年六月诚信声明本人郑重声明:本人所呈交的毕业论文(设计),是在导师的指导下独立进行研究所取得的成果。毕业论文(设计)中凡引用他人已经发表或未发表的成果、数据、观点等,均已明确注明出处。除文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或在网上发表的论文。特此声明。论文作者签名: (手写签名)日 期: 2011年6月7日摘要晶体原子在格点附近的振动称为晶格振动(Crystal lattice vibratio
2、n),格点在晶体中表示原子的平衡位置。从经典力学的观点来看,晶格振动是个力学中的微小振动问题, 只要是力学体系自平衡位置发生微小位移时,这个力学体系的运动都是小振动。固体的许多性质都可以基于静态模型来理解(即晶体点阵模型),即认为构成固体的原子在空间做严格的周期性排列,在该框架内,我们讨论了X 光衍射发生的条件,求出了晶体的结合能,以后还将在此框架内,建立能带论,计算金属大量的平衡性质。然而它只是实际原(离)子构形的一种近似,因为原子或离子是不可能严格的固定在其平衡位置上的,而是在固体温度所控制的能量范围内在平衡位置附近做微振动。只有深入地了解了晶格振动的规律,更多的晶体性质才能得到理解。如:
3、固体热容,热膨胀,热传导,融化,声的传播,电导率,压电现象,某些光学和介电性质,位移性相变,超导现象,晶体和辐射波的相互作用等等。简正振动和振动模可以用来描述它。所以晶格的振动模之所以具有波的形式,是因为晶格具有周期性,而晶格的振动模称为格波。在晶体中所有原子都参与的一种振动模式表示为一个格波。格波具有光学波和声学波两种模式或两类。声子即为格波能量的量子,声子有光学波声子和声学波声子之分。晶格振动(或者声子)与晶体的电导、热导、比热等都有关系。晶格振动的研究始于固体热容研究,19 世纪初人们就通过Dulong-Petit 定律认识到:热容量是原子热运动在宏观上的最直接表现,然而直到20世纪初才
4、由Einstein 利用Plank量子假说解释了固体热容为什么会随温度降低而下降的现象(1907年),从而推动了固体原子振动的研究,1912年玻恩(Born,1954年Nobel物理学奖获得者)和冯卡门(Von-Karman)发表了论晶体点阵振动的论文,首次使用了周期性边界条件,但他们的研究当时被忽视了,因为同年发表的更为简单的Debye热容理论(弹性波近似)已经可以很好的说明当时的实验结果了,但后来更为精确的测量却表明了Debye模型不足,所以1935年Blakman才重新利用Born和Von-Karman近似讨论晶格振动,发展成现在的晶格动力学理论。后来黄昆先生在晶格振动研究上成就突出,特
5、别是1954年和Born共同写作的晶格动力学一书已成为该领域公认的权威著作。对晶格振动的研究意义远不止于其热学性质。研究固体微观过程与宏观性质的重要基础即为晶格振动。晶格振动对于晶体的光学性质、电学性质、磁性、超导电性、结构相变等一系列物理中的问题,都有着及其重要的作用。尤其是在近些年以来,单分子操纵技术与纳米材料越来越受到人们的注重。通过对分子、原子的操纵,实现对材料在纳米尺度上进行加工,实现对单分子、单原子电子器件的制作,一直以来都是人们追求的目标。伴随着单分子操纵技术的迅速发展,人们对单个分子进行操纵的愿望已经成为了现实。我们己经可以由不同于以往的从下到上的思想用一个个的原子逐步的构建我
6、们所需要的原子器件。这也使得通过改变材料的微观结构对材料的各种基本性质进行调控成为可能。关键词: 晶格振动;点缺陷;杂质;一维单原子链;局域模;Abstract Atoms in the vicinity of the crystal lattice vibration is called lattice vibration (Crystal lattice vibration), that the crystal lattice of atoms in the equilibrium position. From the perspective of classical mechanics,
7、 mechanics of lattice vibrations is a tiny vibration, as long as the mechanical system of small displacement from the equilibrium position occurs when the movement of the mechanical system are small vibration. Many properties of solids can be understood based on static models (ie the crystal lattice
8、 model), that is, the atoms that constitute a solid strictly periodic in space in order, within that framework, we discussed the conditions of X-ray diffraction occurs, seek out of the crystal binding energy, the future will be within this framework, the establishment of band theory to calculate the
9、 equilibrium properties of metal a lot. However, it is actually the original (from) a sub-configuration approximation, because the atoms or ions are not strictly fixed at its equilibrium position, but in solid control of the temperature within the energy range near the equilibrium position to do mic
10、ro-vibration . Only in-depth understanding of the laws of lattice vibration, the more the nature of the crystal can be understood. Such as: solid heat capacity, thermal expansion, thermal conductivity, melting, sound propagation, electrical conductivity, piezoelectricity, optical and dielectric prop
11、erties of some of the displacement phase-change, superconductivity, crystal and radiation interactions and so on. Normal vibration and the vibration mode can be used to describe it. So why the lattice vibrational modes in the form of a wave, because the lattice has a periodicity, but the lattice vib
12、rational modes as lattice wave. All the atoms in the crystal are involved in a vibration mode is expressed as a lattice wave. Lattice wave with optical waves and acoustic waves or both of two modes. Phonon is the quantum lattice wave energy, an optical phonon and acoustic phonon wave phonon wave div
13、ided. Lattice vibrations (or phonons) and the crystal conductivity, thermal conductivity, specific heat and so are relationships. Lattice Vibrations of Solid State Heat Capacity Study began in the early 19th century people to understand through the Dulong-Petits law to: heat capacity of the thermal
14、motion of atoms in the macro performance of the most direct, but until the early 20th century by the quantum hypothesis, Einstein by Plank explains why the solid heat capacity decreases with decreasing temperature phenomena (1907), thus promoting the atomic vibrations of the solid, Born 1912 (Born,
15、1954 年 Nobel Prize in Physics) and von Karman (Von- Karman) published a paper on the crystal lattice vibration, the first use of periodic boundary conditions, but their research was neglected because of the same year published a more simple Debye heat capacity theory (elastic wave approximation) has
16、 to be good description of the experimental results at that time, but later more accurate measurements show that the Debye model is inadequate, so the re-use before 1935 Blakman Born and Von-Karman approximation of lattice vibration discussed and developed into the current theory of lattice dynamics
17、 . Later, Mr. Huang Kun achievements in the study of lattice vibrations prominent, especially Born in 1954 and co-writing Lattice Dynamics, a book has become the recognized authority in the field of work. Significance of the Lattice Vibrations of far more than its thermal properties. Of solid micro
18、and macro properties of the process is the important basis for the lattice vibrations. For the crystal lattice vibration optical properties, electrical properties, magnetic properties, superconductivity, structural phase transition . . and a series of physics problems, all have their important role.
19、 Especially since in recent years, single molecule manipulation technology and nano-materials more and more people pay attention. Through molecular, atomic manipulation, to achieve the nano-scale materials processing, to achieve single molecule and atom production of electronic devices has long been
20、 one goal. With the single-molecule manipulation technology is developing rapidly, peoples desire to manipulate single molecules has become a reality. We already can be different from the past thoughts from the bottom to one of the atoms with a gradual build what we need atomic device. It also makes
21、 the microstructure of materials by changing the material properties of various basic control possible.Keywords:Lattic vibration; point defect; impurities; one-dimensional single-atom chain; localized modes;目录序言11单分子操纵技术21.1原子力显微镜21.2 扫描隧道显微镜21.3光镊技术31.4本章小结42完整晶格中晶格的振动921引言922晶格振动的量子化92.3周期性边界条件2.4
22、光学波和声学波2.5一维单原子链中的晶格振动2.6一维双原子链中的晶格振动2.7本章小结3一维单原子链中的空位31引言243.2一维单原子链形成空位的几率3.3一维单原子链空位复合的几率3.4一维单原子链空位数3.5本章小结4单个杂质对晶格振动的影响2441引言2442单个杂质对晶格振动频率的影响2443单个杂质对局域振动模的影响2644本章小结30总结10参考文献 11序言晶体中原子的一种最基本的运动方式即为晶体中原子围绕其平衡位置所作的微小振动。晶格具有周期性,所以,晶格的振动模具有波的形式,我们称其为格波。格波和一般连续介质波有共同的波的特质,但也有不同的特点。在晶体中产生格波是由于原子
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 毕业设计 论文 一维单 原子 中点 缺陷 局域 研究
链接地址:https://www.31ppt.com/p-4861015.html