毕业设计论文QPSK的FPGA实现.doc
《毕业设计论文QPSK的FPGA实现.doc》由会员分享,可在线阅读,更多相关《毕业设计论文QPSK的FPGA实现.doc(41页珍藏版)》请在三一办公上搜索。
1、河南科技大学本科毕业设计(论文)QPSK的FPGA实现摘 要数字调制解调技术在数字通信中占有非常重要的地位, 数字通信技术与FPGA 的结合是现代通信系统发展的一个必然趋势。QPSK数字调制技术,具有频谱利用率高、频谱特性好、抗干扰性能强、传输速率快等突出特点,在移动通信、卫星通信中具有广泛应用价值,但是基于FPGA的全数字QPSK调制解调仍在进一步研究发展中。本文首先叙述了QPSK调制解调技术的工作原理和数字式调制与解调的特点。其次对QPSK的调制和解调设计展开讨论。设计包括QPSK的调制、解调两部分,基于对整个设计的要求进行分析及对QPSK实现FPGA进行功能的分解,以此划分成比较小的模块
2、,自下而上设计系统; 根据QPSK的原理分别画出QPSK调制、解调的实现框图。设计中设定每个比特对应特定的载波,并以载波作为比较,实现最后的对应的输出结果。最后基于VHDL语言分别完成QPSK的调制与解调,完成系统的设计方案,在MAX+PLUSII 环境下对模块逻辑、时序进行仿真调试的仿真结果表明了该设计的正确性,并综合得出RTL的结构图。关键词:QPSK,FPGA,调制,解调FPGA IMPLEMENTATION OF QPSKABSTRACTTechnology of digital modulation and demodulation plays an important role i
3、n digital communication system and the combination of digital communication technology and FPGA is certainly a trend.QPSK digital modulation technique has features of high-spectrum utilization ratio,better spectrum specification, stronger anti-interference performance and faster baud rate and has be
4、en applied widely in mobile communication system and satellite communication systemBut all-digital QPSK modulation and demodulation based on FPGA is still towards further research and development At first, this paper describes the principle of QPSK modulation and demodulation technology as well as t
5、he characteristics of digital modulation and demodulation. In the following words we mainly provide the discussion combined with the research and design of the QPSK modulation and demodulation .This design has two parts, which are QPSK modulation and demodulation .The analysis on the whole design re
6、quirement and the decomposition of QPSK function in FPGA lay the basis for the smaller divided modules. Then we can start up the bottom-up design .Respectively, we draw QPSK modulation and demodulation diagram on the basis of the principle of QPSK. The design supposes each bit corresponds to a speci
7、fic carrier .To achieve the final result of the corresponding output, we should take carrier as a comparison. In the end, we use VHDL to achieve the QPSK modulation and demodulation. After completing the whole system design, it goes on with simulation on module logic, timing in the MAX+PLUSII enviro
8、nment. The simulation results indicate that the design is correct and comprehensively deduce the RTLs chart. KEY WORDS:QPSK, FPGA, Modulation, Demodulation3目录前 言1第1章 绪 论21.1 设计的依据与意义21.2 同类产品的概况2第2章 数字通信系统42.1 通信系统的数字化42.2 数字通信与模拟通信的性能比较52.3 数字通信系统的基本组成部分52.4 数字调制技术82.5 数字调制的方法92.5.1 PSK-又称相移键控法92.5
9、.2 FSK-又称频移键控法92.5.3 ASK-又称幅移键控法102.5.4 MASK-又称多进制数字调制法102.5.5 QAM-又称正交幅度调制法112.5.6 MSK-又称最小移频键控法112.5.7 GMSK-又称高斯滤波最小移频键控法12第3章 FPGA与VHDL语言介绍133.1 FPGA介绍133.1.1 FPGA的发展历史133.1.2 FPGA的基本特点143.1.3 FPGA的优点143.2 VHDL语言介绍153.2.1 VHDL语言发展回顾153.2.2 VHDL系统设计的特点163.2.3 VHDL系统优势17第4章 四相移相键控(QPSK)184.1 QPSK概述
10、184.2 QPSK的特点184.3 QPSK的原理184.4 QPSK的调制和解调204.4.1 调制204.4.2 解调224.5 QPSK应用23第5章 QPSK的FPGA实现245.1 引言245.2 QPSK调制电路FPGA实现及仿真:245.3 QPSK解调电路FPGA实现及仿真26结论29参考文献30致谢32附 录33前 言QPSK是在无线通信中应用比较广泛的一种调制方式,它具有较高的频谱利用率、较强的抗干扰性。近年来,随着微电子技术的发展,尤其是数字信号处理器芯片速度的提高,数字信号处理技术在通信系统中的应用已越来越引起人们的重视,用原理图和VHDL语言实现全数QPSK调制的思
11、想和方法。作为全数字调制系统的实现,具有其可行性。FPGA是目前硬件设计研究的热点,与传统电路设计方法相比,FPGA具有功能强大,开发过程投资小、周期短,可反复编程修改,开发工具智能化等特点。本设计通过基于FPGA,应用VHDL实现QPSK的调制、解调电路。并在MAX+PLUSII实现仿真,判断电路设计的正确性。第1章 绪 论1.1 设计的依据与意义近几十年来,卫星通信由于具有覆盖地域广、通信距离远、通信容量大、传输质量好和具有地址连接能力等优点,已成为现在信息社会的一种重要通信手段。数字调制技术作为这个领域极为重要的一个方面,也得到了迅速的发展。数字调制信号又称为键控信号,调制过程可用键控的
12、方法由基带信号对载频信号的振幅、频率及相位进行调制,其中QPSK(即4PSK)是MPSK(多进制相移键控)中应用较广泛的一种调制方式。QPSK( 四相相移键控) 具有较高的频谱利用率和较好的误码性能,并且实现复杂度小,解调理论成熟,已成为新一代无线接入网物理层和B3G通信中使用的基本调制方式。QPSK调制技术与 FSK、BPSK等调制技术相比,不但抗干扰能力强,而且能更经济有效地利用频带。目前,QPSK调制技术已广泛应用于数字电视、IEEE 802.11 的2Mbps数据传输机制、数字微波通信系统、军事通信、卫星数据传输、有线电视的上行传输、宽带接入与移动通信等领域。 数字调制解调技术在数字通
13、信中占有非常重要的地位,而数字通信技术与 FPGA的结合是现代通信系统发展的一个必然趋势。FPGA器件(Field programmable Gate Array)是八十年代中期出现的一种新概念。利用FPGA技术设计的产品具有重量轻、体积小、速度快、保密程度高、功耗低等特点,极大地提高了产品的性价比和竞争力,大大缩短了设计周期,减少了设计费用,降低了设计风险。1.2 同类产品的概况目前,随着数字通信系统的发展,数字信号的调制识别技术在军事、民用领域都有十分广泛的应用价值。近年来,各种调制技术层出不穷,一直受到人们的关注。由于QPSK能够非相干解调并且频谱利用率高, 所以已用于很多国家的无线通信
14、中,如北美移动/个人无线标准IS-54和IS-136以及欧洲私人商务无线电的TETRA标准等等。在这些应用中,一些高性能的QPSK调制/解调芯片相继问世。国外已经有一些关于全数字QPSK调制解调器方面的研究成果和芯片问世,如ST公司ST55、ST5518,比利时NEWTEC公司的NTC-2077/FT 、美国休斯公司的BCD4C-M5000,美国HARRTS公司和德国HISRSCHMANN赫曼公司也都有相关的芯片。又如INTEL公司的STEL-2176是一款全数字调制解调芯片,兼容IEEE802.14、MCNS和DAVIC等标准。解调部分可直接输入高达50MHZ的中频模拟信号,信号宽带可达8M
15、HZ,可解调16/64/256QAM的连续信号;调制部分,可输出SMHZ-65mhz的连续/突发信号,调制方式可以是BPSK/QPSK/QAM,速率最高可高达40mbps(16QAM)。与此同时,国内也有一些成果,比如北京海尔集成电路设计有限公司研制的符合DVB-S标准的卫星信号解码器HQPSK-DV。该芯片包括载波恢复、符号同步、解调、前向纠错和码流解扰等功能。FPGA技术在许多领域均有广泛的应用,特别是在无线通信领域里,由于具有极强的实时性,使其对话音进行实时处理成为可能。由于它是通过面向芯片结构指令的软件编程来实现其功能的,因而仅修改软件而不需改硬件平台就可以改进系统原有设计方案或原有功
16、能,因而具有极大的灵活性;又由于FPGA芯片并非专门为某种功能设计的,因而使用范围广、产量大、价格可以降到很低。就 FPGA而言,由于亚微米工艺的采用,其速度更快,门数更多。目前Lucent和XILINX公司均有10万门以上的产品,并且集成了一些新的功能,如 System on Chip, Programming on System等,使其更加灵活。所以FPGA在无线通信系统中大量应用,促进了无线通信的发展;而无线通信的蓬勃发展又促进了FPGA技术的不断进步。 第2章 数字通信系统2.1 通信系统的数字化为什么通信系统,无论是军用系统还是商用系统,都在进行数字化?这有许多原因,其中最主要的原因
17、是:与模拟信号相比,数字信号更易于再生。数字通信系统传输线上是理想的二进制数字脉冲。波形的形状受到两个基本因素的影响:(1)所有传输和电路的频率传递函数都是非理想的;(2)存在电子噪声或其他的干扰,这两个因素都会引起波形的失真,并且此项失真是传输线长度的函数,在传输脉冲仍然能够被可靠识别之前(即在传输脉冲恶化倒模糊状态之前),由数字放大器将脉冲放大,并恢复其最初的理想形状,这样脉冲就“再生”了。在传输系统中,在规则的时间间隔内执行这种功能的电路称为“再生中继器”。与模拟电路相比,数字电路有更好的抗失真和干扰的能力。二进制数字电路的工作状态只有两个开或关,因此只有能够把电路从一个状态变换倒另一个
18、状态的干扰才能起到破坏作用。这样的两个状态工作有助于信号的再生,因而能在传输中有效的抑制噪声和其他累计干扰。然而,模拟信号不是“双态”信号,它的波形有无限多个,在模拟电路中,即使很小的干扰也能导致信号产生难以接受的失真,且失真一旦产生,就无法通过放大器来抑制。因为模拟信号不能去除累积的噪声,所以就不能很好地再生信号。若采用数字技术,通过检错与纠错可以获得极低的差错概率从而产生高保真信号,而模拟系统则没有类似的技术。数字通信系统还有其他的优点:数字电路比模拟电路更可靠,且其产生成本比模拟电路底;数字硬件比模拟硬件更具有灵活性,比如微机处理器、数字开关、大规模集成(LSI)电路等,时分复用的模拟信
19、号更简单;不同类型的数字信号(数报、电报、电话、电视等)在传输和交换中都被堪称是相同的信号比特信号;为方便交换,还可将数字信号以数据包的形式进行处理。数字技术因为能过抗自然干扰和人为干扰,能够进行加密而更适用于信号处理。计算机于计算机之间、数字设备或终端与电脑之间的数据通信需求越来越多,这些数字终端可以通过数字通信链路获得更好的服务。数字通信系统获得这些优点的代价是什么?与模拟系统相比,数字系统更需要更多的信号处理技术。在通信的各个阶段,数字系统都需要分配一部分资源用于实现同步,而在模拟系统中,同步相对比较容易。数字通信系统的另一个缺点是具有“门限效应”,即当信噪比下降倒一定限度时,服务质量就
20、会急速恶化,而大部分模拟通信系统服务质量的下降则比较平滑。2.2 数字通信与模拟通信的性能比较模拟通信系统与数字通信系统的一个主要区别是性能评估的方法不同。模拟系统的波形是连续的,因而有无穷多个,这说明接收机必需处理无穷多个波形。衡量模拟通信系统的性能的指标是保真标准,如信噪比、百分比失真、发端波形和收端波形之间的期望均方误差。与模拟通信系统不同,数字通信系统发送的是代表数字的信号,这些数字组成一个有限集或字符表,且对于接收机而言该表是先验而知的。衡量数字通信系统的一个性能参数是错误判决的概率或者差错概率(PE)。2.3 数字通信系统的基本组成部分图2-1显示了一个数字通信系统的功能性框图和基
21、本组成部分。信源输出的可以是模拟信号,如音频或是视频信号;也可以是数字信号,如电传机的输出,该信号在时间上是离散的,并且具有有限个输出字符。在数字通信系统中,由信源产生的消息变换成二进制数字序列。理论上,应当用尽可能少的二进制数字表示信源输出(消息)。换句话说,我们要寻求一种信源输出的有效的表示方法,使其很少产生或不产生沉余。将模拟或数字信源的输出有效地变换成二进制数字序列的处理过程称为信号编码或数据压缩。图2-1 数字通信系统的基本组成部分由信源编码器输出的二进制数字序列称为信息序列,它被传送倒新到编码器。信道编码器的目的是在二进制信息序列中以受控的方式引入一些沉余,以便于在接收机中用来克服
22、信号在信道中传输时所遭受的噪声和干扰的影响。因此。所增加的沉余是用来提高接受数据的可靠性以及改善接受号的逼真度的。实际上,信息序列中的沉余有助于接收机译出期望的信息序列。例如,二进制信息序列的一种(平凡的)形式的编码就是将每个二进制数字简单重复m次,这里m为一个整数。更复杂的(不平法的)编码涉及倒一次取K个信息比特,并将每个K比特序列映射成唯一的N比特序列,该序列成为码字。以这种方式对数据编码所引入的沉余的大小是由比特n/k来衡量的。该比特的倒数,即k/n,称为码的速率或简称码率。信道编码器输出的二进制序列送至数字调制器,它是通信信道的接口。因为在实际中遇到的几乎所有的通信信道都能够传输电信号
23、(波形),所以数字调制的主要目的是将二进制信息序列映射成信号波形。为了详细说明这点,假定已编码的信息序列以均匀速率R(b/s)一次一个比特传输,数字调制器可以简单地将二进制数字0映射成波形s0(t), 信道编码器输出的二进制序列送至数字调制器,它是通信信道的接口。因为在实际中遇到的几乎所有的通信信道都能够传输电信号(波形),所以数字调制的主要目的是将二进制信息序列映射成信号波形。为了详细说明这点,假定已编码的信息序列以均匀速率R(b/s)一次一个比特传输,数字调制器可以简单地将二进制数字0映射成波形s0(t),而二进制数字“1”映射成波形s1(1)。在这种方式中,信道编码器输出的每个比特是分别
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 毕业设计 论文 QPSK FPGA 实现
链接地址:https://www.31ppt.com/p-4859720.html