毕业设计论文双足智能机器人的设计与实现.doc
《毕业设计论文双足智能机器人的设计与实现.doc》由会员分享,可在线阅读,更多相关《毕业设计论文双足智能机器人的设计与实现.doc(44页珍藏版)》请在三一办公上搜索。
1、1 引言机器人是作为现代高新技术的重要象征和发展结果,已经广泛应用于国民生产的各个领域,并正在给人类传统的生产模式带来革命性的变化,影响着人们生活的方方面面。对于步行机器人来说,它只需要模仿人在特殊情况下(平地或己知障碍物)完成步行动作,这个条件虽然可以使机器人的骨骼机构大大降低和简化,但也不是说这个系统就不复杂了,其步行动作一样是高度自动化的运动,需要控制机构进行复杂而巧妙地协调各个关节上的动作。双足机器人的研究工作开始于上世纪60年代末,只有三十多年的历史,然而成绩斐然。如今已成为机器人领域主要研究方向之一。最早在1968年,英国的MosherR试制了一台名为“Rig”的操纵型双足步行机器
2、人1,揭开了双足机器人研究的序幕。该机器人只有踝和髋两个关节,操纵者靠力反馈感觉来保持机器人平衡。19681969年间,南斯拉夫的M.Vukobratovic提出了一种重要的研究双足机器人的理论方法,并研制出全世界第一台真正的双足机器人。双足机器人的研制成功,促进了康复机器人的研制。随后,牛津大学的Witt等人也制造了一个双足步行机器人,当时他们的主要目的是为瘫痪者和下肢残疾者设计使用的辅助行走装置。这款机器人在平地上走得很好,步速达0.23米/秒。日本加藤一郎教授于1986年研制出WL12型双足机器人。该机器人通过躯体运动来补偿下肢的任意运动,在躯体的平衡作用下,实现了步行周期1.3秒,步幅
3、30厘米的平地动态步行。法国Poitiers大学力学实验室和国立信息与自动化研究所INRIA机构共同开发了一种具有15个自由度的双足步行机器人BIP2000,其目的是建立一整套具有适应未知条件行走的双足机器人系统。它们采用分层递解控制结构,使双足机器人实现站立、行走、爬坡和上下楼梯等。此外,英国、苏联、南斯拉夫、加拿大、意大利、德国、韩国等国家,许多学者在行走机器人方面也做出了许多工作。 国内双足机器人的研制工作起步较晚。1985年以来,相继有几所高校进行了这方面的研究并取得了一定的成果。哈尔滨工业大学自1985年开始研制双足步行机器人,迄今为止已经完成了三个型号的研制工作。其中HIT为12个
4、自由度,实现了静态步行和动态步行,能够完成前后行、侧行、转弯、上下台阶及上斜坡等动作。目前,该校正致力于功能齐全的双足机器人HIT的研制工作,新机器人包括行走机构、上身及髋部执行机构,初步设定32个自由度。国防科技大学也进行了这方面的研究。在1989年研制成功了一台双足行走机器人,这台机器人具有10个自由度,能完成静态步行和动态步行。国防科技大学还将工业机器人的轨迹示教方法用到了两足步行机器人的步态规划中,形成了步行机器人的步态示教规划技术。值得一提的是,北京理工大学研制成功我国首例拟人机器人BRH-01,该机器人身高1.58米,体重76公斤,具有32个自由度,每小时能够行走1公里,步幅0.3
5、3米。除了能打太极拳,这个机器人还会腾空行走,并能根据自身的平衡状态和地面高度变化,实现未知路面的稳定行走。它在系统集成、步态规划和控制系统等方面实现了重大突破,标志着我国双足机器人研究已经跨入世界先进行列。国内其它院校如清华大学、上海交通大学、北京航空航天大学等高等院校也在近几年投入了相当的人力、物力,进行智能双足机器人的研制工作。我校也开始了这方面的研究工作,不过我们的工作处于研究的初级阶段。为了促进机器人技术在我国的发展,全国各地尤其是部分高校举办了各种类型的机器人大赛。中国机器人大赛是由中国自动化学会机器人竞赛工作委员会和科技部高技术研究发展中心主办的一个全国性的赛事。其中最为引人瞩目
6、的舞蹈机器人项目,足球机器人项目就是为了促进双足步行机器人的发展而设立的。由于步行机器人的实现目前还存在很多技术难题,前几届全国机器人大赛基本上是以轮式机器人为主,步行机器人参赛才被列入议程不久。由此可见,双足步行机器人的发展还有一段很长的路要走。研制双足步行机器人的重要内容是对其进行建模分析、步态规划、控制分析等。基于上述原因,本课题拟进行双足步行机器人的基本设计与研究,研制具有高度稳定性的双足步行机器人平台,为研究得后续工作和进一步的拟人机器人研制奠定基础,所设计的机器人以ATmega1280单片机微控制器为核心技术芯片,完成行走、下蹲、倒地、起身、前滚翻、后滚翻等简单动作,同时通过一些必
7、要的传感器组件完成其对前方道路情况的探测和判断,以达到避障效果。2 双足智能机器人总体分析要设计和开发一个步行机器人,首先应该对其进行总体分析和设计,确定步行机器人的功能、基本结构和系统配置等。2.1 功能定位这款机器人不仅能够满足实验室科研的需要,而且应该是一款很适合学生参与、研究、学习的机器人,能够满足互相学习的需要。现在希望制作出一个成本相对较低的机器人,研制双足步行机器人能够满足这方面的要求。 基于上面几点的考虑,决定开发一款双足智能机器人,首先使其能够完成一些基本动作,既开始时先走3步、立正、然后卧下(身体向前)、向前翻跟斗3次,再起立、向前走3步、立正、然后卧下(身体向后)、再向后
8、翻跟斗2次、再起立、然后以轻快步履走向终点、要在指定5分钟或少于指定时间内完成所有动作,及要走到终点,同时要求其对前方道路情况的探测和判断,用以避障。2.2 自由度的配置机器人可以有很多不同类型的关节,有线性的、旋转的、滑动的或球铰链型的。人体的髋关节和踝关节类似小运动范围的球关节,能够使人灵活行走,实现前后左右拐弯等行走动作,方向灵活,但需要控制的自由度多、难度大,所以在机器人结构中不常用。但是单纯用旋转关节来实现多自由度的设计势必给空间布置和安装增加了难度,而且同时又考虑到关节驱动件驱动能力、运动效率和设计成本,以及设计审美性等因素。该双足智能机器人设计的目的是要实现拟人下肢多自由度得平稳
9、行走,在实现这个功能的前提下为降低设计的难度,我们按照目前世界上各研究机构普通采用的下肢10个自由度的关节配置形式,来实现行走功能所必须的各关节自由度分布,具体自由度配置为单腿髋关节2个,膝关节1个,踝关节2个。髋关节用于摆动腿,实现迈步,并起到了辅助平衡作用。膝关节主要用来调节重心的高度,及改变摆动腿的着地高度,使之与地形相适应。踝关节用来和髋关节相配合实现支撑腿的移动,以及调整与地面的接触状态。基于郑元芳博士的理论,来规划自己所要设计的双足机器人的自由度。为了实现这款双足步行机器人的稳步行走,可以规划其运动过程,假设机器人行走步骤:先走3步,立正,然后卧下,向前翻跟斗3次,再起立,向前走3
10、步,立正,然后卧下(身体向后),再向后翻跟斗2次,再起立,然后走向终点,遇到障碍物,能向左拐。则从机器人步行步骤可以看出:机器人向前迈步,髋关节的前向旋转自由度起作用,同时配合踝关节可实现支撑腿的移动;这样,所设计的双足步行机器人有10个个自由度,每条腿5个自由度,即踝关节有2个自由度,膝关节有1个自由度,髋关节有2个自由度,包括前向、后向自由度。其结构图见下图1。图1自由度的分配踝关节和髋关节采用十字交叉结构。十字交叉关节又叫万向联轴节,常用于汽车方向盘底盘转向机构,可以实现互相垂直方向的两个自由度运动,这种机构可以减少关节耦合程度和非线性。研究表明:至少要有髋、膝、踝这三个关节,双足稳定行
11、走才能成为可能。髋、膝、踝关节对于稳定有效的行走来说是不可少的。髋关节用于摆动腿,实现迈步并使上躯体前倾或者后仰,使之在步行过程中起辅助平衡作用。膝关节主要用来调整重心的高度、并用来调整摆动腿的着地高度,使之与地形相适应。踝关节和步行功能有关,它用来和髋关节相配合实现支撑腿和上躯体的移动,而且还可以调整脚掌与地面的接触状态。如果踝关节被固定,将会缺乏与地面触觉感知的能力,前后向稳定性很差。2.3系统结构设计根据确定的自由度配置方案以及选用的微型伺服马达、传感器、控制板,设计机器人的零件。本着结构简单、尽量采用通用零件、外形美观等原则,对机器人的机构及外观进行优化。2.3.1 布置对称性本文设计
12、的机器人机构,其主要特点有以下几点:(1) 步行运动中普遍存在结构对称性。Goldberg3等人研究了步行运动中的对称性,发现机身运动的对称性和腿机构的对称性之间存在相互关系。在单足支撑阶段,对称性的机身运动要求腿部机构也是对称的;在双足支撑阶段,机身对称性运动未必需要腿部机构的对称性,除非有额外的约束条件。根据这一点,我们在结构设计时也采用对称性布置。(2) 框架的设计有效地利用了舵机的尺寸大小,并使舵机的活动范围能尽量符合各关节的活动范围。(3) 采用多关节型结构。行走机构能实现平地前后、平地侧行、转弯、上下台阶等功能。(4) 整个结构采用1mm的铝合金(LY12)钣金材料。(5) 由于机
13、器人的各关节是用舵机驱动为了减小机器人的体积、减轻重量,机器人的结构做成是框架型的。框架的设计有效地利用了舵机的尺寸大小,并使舵机的活动范围能尽量符合各关节的活动范围。 实物图见下图2所示 。 图2 狭窄足双足机器人机械结构简图2.3.2 驱动方案的选择实现行走的基本问题是对机器人各关节位置、速度的伺服控制和协调控制。如果把连杆以及关节想象为机器人的骨骼,那么驱动器就起到肌肉的作用,它通过移动或转动连杆来改变机器人的构型。驱动器必须有足够的功率对负载加速或者减速。同时,启动器本身要精确、灵敏、轻便、经济、使用方便可靠且易于维护。目前机器人的驱动方式主要有液压驱动、气压驱动和电机驱动三种方式。液
14、压驱动方式虽然具有驱动力矩大、响应速度快等特点,但是成本高、重量大、工艺复杂,且有发热问题。气压驱动易于高速控制,气动调节阀的制造精度要求没有液压元件高、无污染,但是位置和速度控制困难,并且其工作稳定性差,压缩空气需要除水。液压驱动与气压驱动不能实现试验系统自带能源的目标,直接决定了这两种驱动方式难于应用到双足机器人系统中。电机驱动具有成本低、精度高、可靠且维修方便等特点,容易和计算控制系统相连接,目前的双足机器人大都采用这种方式。舵机是一种最早应用在航模运动中的动力装置,是一种微型伺服马达,它的控制信号是一个宽度可调的方波脉冲信号,所以很方便和数字系统进行接口。只要能产生标准的控制信号的数字
15、设备都可以用来控制舵机,比如PLC、单片机和DSP等。而且舵机体积紧凑、便于安装、输出力矩大、稳定性好、控制简单。根据所需的驱动力矩要求和性价比方面的考虑,我们决定选用辉盛公司生产的12公斤大扭力全金属齿轮舵机。该类型舵机价格适中且规格参数能够满足双足机器人的各项性能要求。因此在综合了开销,性能等一系列因素后我们选择了MG945。经过尝试,我们得出了舵机转动角度与脉冲的对应关系:90度对应的差不多是1.6ms的脉冲,也就是说一个1.6ms的脉冲MG945就转到90度,而0度对应的是0.8ms脉冲,180度对应的是2.1ms脉冲。2.3.3 避障传感器原理智能关节机器人为了能在未知或时变环境下自
16、主地工作.应具有感受作业环境和规划自身动作的能力。为此.必须提高机器人对当前感知环境的快速理解识别及实时避障的能力。实时避障是实现智能化机器人自主工作能力的关键技术.也是国内外智能机器人近期发展的一个热点.其显著特征是具有传感器信息反馈.可以实现很好的智能行为。红外传感器是一种比较有效的接近觉传感器,经常被国内外学者应用在多关节机器人避障系统中,用来构成大面积机器人“敏感皮肤”,覆盖在机器人手臂表面,可以检测机器人运行过程中的各种物体。传感器发出的光的波长大约在几百纳米范围内,是短波长的电磁波。红外传感器具有以下特点:不受电磁波的干扰、非噪声源、可实现非接触性测量。另外,红外线(指中、远红外线
17、)不受周围可见光的影响,故可在昼夜进行测量。同声纳传感器相似,红外线传感器工作处于发射/接收状态。这种传感器由同一发射源发射红外线,并用两个光检测器测量反射回来的光量。由于这些仪器测量光的差异,它们受环境的影响非常大,物体的颜色、方向、周围的光线都能导致测量误差。但由于发射光线是光而不是声音,可以希望在相当短的时间内获得较多的红外线传感器测量值。测距范围较近,大致为30cm以内。3 双足智能机器人步态规划步态规划是双足智能机器人研究中的一项重要工作,步态规划的好坏将直接影响机器人行走过程中的稳定性、所需驱动力矩的大小以及姿态的美观性等多个方面,同它也直接影响到控制方法及其实现的难易程度。3.1
18、步态规划的基本原则步态规划4工作既可以在关节空间内也可以在直角坐标空间内进行,无论在哪个空都有很多不同的规划方法。事实上,许多方法可以在两种空间内通用。直角坐标空间的轨迹规划比较实用和直观,可以得到一条可控且可预知的路径,人们很容易看到机人末端执行器的轨迹,但计算复杂不易规划。而且,难以确保不存在奇异点(发生机器轨迹穿入自身,及轨迹到达工作空间之外等)。显然,对于指定的像直线运动那样的径,必须在直角坐标空间内进行规划,才能生成直线。如果不要求机器人跟踪指定的径,那么关节空间的轨迹规划更容易计算从而产生出实际的运动。实际上,所有用于节空间轨迹规划的方法都可用于直角坐标空间的规划。最根本的差别在于
19、,直角坐标间轨迹规划必须反复求解逆运动学方程来计算关节角。对于关节空间轨迹规划,规划数生成的值就是关节量,而直角坐标空间轨迹规划函数生成的值是机器人末端执行器位姿,它们需要通过求解逆运动学方程才能转化为关节量。双足步行机器人的步态规划,是指机器人行走过程中其各组成部分运动轨迹的划,比如说,脚掌何时离开地面、摆动相中整个脚掌在空中的轨迹、何时落地等。关键之就在于所规划的轨迹必须满足零力矩点(ZMP)稳定条件,否则,机器人不能稳定步行步态规划要解决的问题主要有:1. 保证机器人本体不和环境或者自身发生干涉,从而导致无法实现预定的轨迹。2. 保证机器人的稳定性。机器人的稳定性问题一直是困扰两足步行机
20、器人发展的重要问题,由于各个关节间的藕合作用,很难设计出理想的ZMP轨迹5。现在使用的步态规划方法主要有如下几种:(1) 基于实验的规划方法这种规划方法基于力学的相似原理,基本过程如下:让人模仿机器人行走(如果机器人有几个自由度,那么人在模仿行走的时候也尽量只动相应的关节),同时对此人的行走过程进行正面和侧面的录像,然后对这些录像进行分析,得到此人在步行过程各个主要关节的角度变化与时间的函数,然后根据力学相似原理把这些函数相似地推广到机器人的关节变化上。(2) 基于能量原理的规划方法这种方法来源于一个生物学假设:人经过千百万年的进化,其行走方式是能量消耗最低的,而且还能保持步行的稳定性。如果机
21、器人也能满足这个假设,则其行走方式将与人一样或很接近。根据能耗最小原则可以建立一个变分方程,并最终得到机器人的轨迹方程。(3) 基于力学稳定性的规划方法在机器人行走过程中,其ZMP点必须落在某个区域范围之内,只有这样才能保证步行机器人稳定地行走。实现方法有两种:a. 计算出理想的ZMP轨迹,然后推导出各个关节的运动函数以实现理想行走。b. 先大致规划出双足和躯干的运动轨迹,然后进行ZMP计算,最后选出稳定性最好的结果作为控制方程。相比前一种方法,后一种可以较快地得到规划结果。在保证了机器人基本性能的前提下,尽量减少控制的工作量,降低成本。所以本文将采用第二种方法,结合三次样条插值和机器人的逆运
22、动学规划进行机器人步态的参数化设计。3.2步态规划的具体方法 合适的步态设计是机器人实现动态行走的关键。在计算各关节轨迹之前,首先要建立机器人所在的空间坐标系。坐标系的 x轴指向机器人的正面,y轴由右侧指向左侧,z轴垂直向上,原点0位于后脚完全落地时踝关节在地面上的垂直投影处。当机器人沿着直线往前走时,由于只考虑前向运动,双脚和 腰部在侧方向( y轴)上的位置是不变的,因为设定条件为机器人在水平地面行走,且脚面抬起高度为0,所以z轴位置不变。因此,仅仅讨论在 x平面内的轨迹。机器人所在的空间坐标系如图3 所示 。图3 机器人的空间坐标系双足机器人完整的步行过程包括三个阶段6 (1) 起步阶段:
23、由初始的双腿并立静止状态变化到行走状态,一条腿向前跨出了半步距离,髋部速度从零上升到恒定值; (2) 整步阶段:两条腿交替地向前跨出一步距离,髋部速率保持不变; (3) 落步阶段:后腿向前跨出半步,落在与另一条腿并行的部位,髋部速度减少到零,恢复成双腿并立静止状态。主要讨论整步的轨迹计算。前向运动的规划步骤如下: (1) 确定步速和步长; (2) 设定初始参数,计算踝关节和髋关节轨迹 ; (3) 根据踝关节和髋关节轨迹计算膝关节轨迹; (4) 计算ZMP轨迹; (5) 改变参数值,返回第 2步; (6) 选取具有最大稳定性的轨迹。 步态规划的流程图如图4所示。图4 双足机器人的步态规划流程图双
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 毕业设计 论文 智能 机器人 设计 实现

链接地址:https://www.31ppt.com/p-4858559.html