arm嵌入式系统基础教程.ppt
《arm嵌入式系统基础教程.ppt》由会员分享,可在线阅读,更多相关《arm嵌入式系统基础教程.ppt(209页珍藏版)》请在三一办公上搜索。
1、第4章 目录,1.ARM处理器寻址方式2.指令集介绍ARM指令集Thumb指令集,第4章 目录,1.ARM处理器寻址方式2.指令集介绍ARM指令集Thumb指令集,第4章 ARM7TDMI(-S)指令系统,简介,ARM处理器是基于精简指令集计算机(RISC)原理设计的,指令集和相关译码机制较为简单。ARM7TDMI(-S)具有32位ARM指令集和16位Thumb指令集,ARM指令集效率高,但是代码密度低;而Thumb指令集具有较高的代码密度,却仍然保持ARM的大多数性能上的优势,它是ARM指令集的子集。所有的ARM指令都是可以有条件执行的,而Thumb指令仅有一条指令具备条件执行功能。ARM程
2、序和Thumb程序可相互调用,相互之间的状态切换开销几乎为零。,第4章 ARM7TDMI(-S)指令系统,ARM指令集与Thumb指令集的关系,Thumb指令集具有灵活、小巧的特点,ARM指令集支持ARM核所有的特性,具有高效、快速的特点,4.1 ARM处理器寻址方式,寻址方式分类,寻址方式是根据指令中给出的地址码字段来实现寻找真实操作数地址的方式。ARM处理器具有9种基本寻址方式。1.寄存器寻址;2.立即寻址;3.寄存器移位寻址;4.寄存器间接寻址;5.基址寻址;6.多寄存器寻址;7.堆栈寻址;8.块拷贝寻址;9.相对寻址。,操作数的值在寄存器中,指令中的地址码字段指出的是寄存器编号,指令执
3、行时直接取出寄存器值来操作。寄存器寻址指令举例如下:MOV R1,R2;将R2的值存入R1 SUB R0,R1,R2;将R1的值减去R2的值,结果保存到R0,4.1 ARM处理器寻址方式,寻址方式分类寄存器寻址,MOV R1,R2,0 xAA,立即寻址指令中的操作码字段后面的地址码部分即是操作数本身,也就是说,数据就包含在指令当中,取出指令也就取出了可以立即使用的操作数(这样的数称为立即数)。立即寻址指令举例如下:SUBSR0,R0,#1;R0减1,结果放入R0,并且影响标志位MOVR0,#0 xFF000;将立即数0 xFF000装入R0寄存器,4.1 ARM处理器寻址方式,寻址方式分类立即
4、寻址,MOV R0,#0 xFF00,0 xFF00,从代码中获得数据,寄存器移位寻址是ARM指令集特有的寻址方式。当第2个操作数是寄存器移位方式时,第2个寄存器操作数在与第1个操作数结合之前,选择进行移位操作。寄存器移位寻址指令举例如下:MOVR0,R2,LSL#3;R2的值左移3位,结果放入R0,;即是R0=R28 ANDSR1,R1,R2,LSL R3;R2的值左移R3位,然后和R1相;“与”操作,结果放入R1,4.1 ARM处理器寻址方式,寻址方式分类寄存器移位寻址,MOV R0,R2,LSL#3,0 x08,0 x08,逻辑左移3位,寄存器间接寻址指令中的地址码给出的是一个通用寄存器
5、的编号,所需的操作数保存在寄存器指定地址的存储单元中,即寄存器为操作数的地址指针。寄存器间接寻址指令举例如下:LDRR1,R2;将R2指向的存储单元的数据读出;保存在R1中 SWPR1,R1,R2;将寄存器R1的值和R2指定的存储;单元的内容交换,4.1 ARM处理器寻址方式,寻址方式分类寄存器间接寻址,LDR R1,R2,0 xAA,基址寻址就是将基址寄存器的内容与指令中给出的偏移量相加,形成操作数的有效地址。基址寻址用于访问基址附近的存储单元,常用于查表、数组操作、功能部件寄存器访问等。基址寻址指令举例如下:LDRR2,R3,#0 x0C;读取R3+0 x0C地址上的存储单元;的内容,放入
6、R2 STRR1,R0,#-4!;先R0=R0-4,然后把R1的值寄存;到保存到R0指定的存储单元,4.1 ARM处理器寻址方式,寻址方式分类基址寻址,LDR R2,R3,#0 x0C,0 xAA,将R3+0 x0C作为地址装载数据,多寄存器寻址一次可传送几个寄存器值,允许一条指令传送16个寄存器的任何子集或所有寄存器。多寄存器寻址指令举例如下:LDMIAR1!,R2-R7,R12;将R1指向的单元中的数据读出到;R2R7、R12中(R1自动加1)STMIAR0!,R2-R7,R12;将寄存器R2R7、R12的值保;存到R0指向的存储;单元中;(R0自动加1),4.1 ARM处理器寻址方式,寻
7、址方式分类多寄存器寻址,LDR R1!,R2-R4,R6,0 x40000010,堆栈是一个按特定顺序进行存取的存储区,操作顺序为“后进先出”。堆栈寻址是隐含的,它使用一个专门的寄存器(堆栈指针)指向一块存储区域(堆栈),指针所指向的存储单元即是堆栈的栈顶。存储器堆栈可分为两种:向上生长:向高地址方向生长,称为递增堆栈向下生长:向低地址方向生长,称为递减堆栈,4.1 ARM处理器寻址方式,寻址方式分类堆栈寻址,4.1 ARM处理器寻址方式,寻址方式分类堆栈寻址,0 x12345678,0 x12345678,堆栈指针指向最后压入的堆栈的有效数据项,称为满堆栈;堆栈指针指向下一个待压入数据的空位
8、置,称为空堆栈。,4.1 ARM处理器寻址方式,寻址方式分类堆栈寻址,0 x12345678,所以可以组合出四种类型的堆栈方式:满递增:堆栈向上增长,堆栈指针指向内含有效数据项的最高地址。指令如LDMFA、STMFA等;空递增:堆栈向上增长,堆栈指针指向堆栈上的第一个空位置。指令如LDMEA、STMEA等;满递减:堆栈向下增长,堆栈指针指向内含有效数据项的最低地址。指令如LDMFD、STMFD等;空递减:堆栈向下增长,堆栈指针向堆栈下的第一个空位置。指令如LDMED、STMED等。,4.1 ARM处理器寻址方式,寻址方式分类堆栈寻址,多寄存器传送指令用于将一块数据从存储器的某一位置拷贝到另一位
9、置。如:STMIAR0!,R1-R7;将R1R7的数据保存到存储器中。;存储指针在保存第一个值之后增加,;增长方向为向上增长。STMIBR0!,R1-R7;将R1R7的数据保存到存储器中。;存储指针在保存第一个值之前增加,;增长方向为向上增长。,4.1 ARM处理器寻址方式,寻址方式分类块拷贝寻址,相对寻址是基址寻址的一种变通。由程序计数器PC提供基准地址,指令中的地址码字段作为偏移量,两者相加后得到的地址即为操作数的有效地址。相对寻址指令举例如下:BLSUBR1;调用到SUBR1子程序BEQLOOP;条件跳转到LOOP标号处.LOOPMOVR6,#1.SUBR1.,4.1 ARM处理器寻址方
10、式,寻址方式分类相对寻址,第4章 目录,1.ARM处理器寻址方式2.指令集介绍ARM指令集Thumb指令集,简单的ARM程序,;文件名:TEST1.S;功能:实现两个寄存器相加;说明:使用ARMulate软件仿真调试 AREAExample1,CODE,READONLY;声明代码段Example1 ENTRY;标识程序入口 CODE32;声明32位ARM指令START MOVR0,#0;设置参数 MOVR1,#10LOOPBLADD_SUB;调用子程序ADD_SUB BLOOP;跳转到LOOPADD_SUB ADDSR0,R0,R1;R0=R0+R1 MOVPC,LR;子程序返回 END;文件
11、结束,使用“;”进行注释,标号顶格写,实际代码段,声明文件结束,简单的ARM程序,;文件名:TEST1.S;功能:实现两个寄存器相加;说明:使用ARMulate软件仿真调试 AREAExample1,CODE,READONLY;声明代码段Example1 ENTRY;标识程序入口 CODE32;声明32位ARM指令START MOVR0,#0;设置参数 MOVR1,#10LOOPBLADD_SUB;调用子程序ADD_SUB BLOOP;跳转到LOOPADD_SUB ADDSR0,R0,R1;R0=R0+R1 MOVPC,LR;子程序返回 END;文件结束,第4章 目录,1.ARM处理器寻址方式
12、2.指令集介绍ARM指令集Thumb指令集,ARM指令小节目录,1.指令格式2.条件码3.存储器访问指令4.数据处理指令5.乘法指令6.ARM分支指令7.协处理器指令8.杂项指令9.伪指令,ARM指令小节目录,1.指令格式2.条件码3.存储器访问指令4.数据处理指令5.乘法指令6.ARM分支指令7.协处理器指令8.杂项指令9.伪指令,ARM指令的基本格式如下:,4.2 指令集介绍,ARM指令集指令格式,S,其中号内的项是必须的,号内的项是可选的。各项的说明如下:,opcode:指令助记符;cond:执行条件;S:是否影响CPSR寄存器的值;Rd:目标寄存器;Rn:第1个操作数的寄存器;oper
13、and2:第2个操作数;,ARM指令的基本格式如下:,4.2 指令集介绍,ARM指令集第2个操作数,S,灵活的使用第2个操作数“operand2”能够提高代码效率。它有如下的形式:#immed_8r常数表达式;Rm寄存器方式;Rm,shift寄存器移位方式;,4.2 指令集介绍,ARM指令集第2个操作数,#immed_8r常数表达式 该常数必须对应8位位图,即一个8位的常数通过循环右移偶数位得到。,循环右移10位,8位常数,4.2 指令集介绍,ARM指令集第2个操作数,#immed_8r常数表达式 该常数必须对应8位位图,即一个8位的常数通过循环右移偶数位得到。,例如:MOVR0,#1ANDR
14、1,R2,#0 x0F,4.2 指令集介绍,ARM指令集第2个操作数,Rm寄存器方式 在寄存器方式下,操作数即为寄存器的数值。例如:SUBR1,R1,R2MOVPC,R0,4.2 指令集介绍,ARM指令集第2个操作数,Rm,shift寄存器移位方式 将寄存器的移位结果作为操作数,但Rm值保持不变,移位方法如下:,4.2 指令集介绍,ARM指令集第2个操作数,4.2 指令集介绍,ARM指令集第2个操作数,Rm,shift寄存器移位方式例如:ADDR1,R1,R1,LSL#3;R1=R1+R1*8=9R1SUBR1,R1,R2,LSR R3;R1=R1-(R2/2R3),ARM指令小节目录,1.指
15、令格式2.条件码3.存储器访问指令4.数据处理指令5.乘法指令6.ARM分支指令7.协处理器指令8.杂项指令9.伪指令,ARM指令的基本格式如下:,4.2 指令集介绍,ARM指令集条件码,S,使用条件码“cond”可以实现高效的逻辑操作,提高代码效率。所有的ARM指令都可以条件执行,而Thumb指令只有B(跳转)指令具有条件执行 功能。如果指令不标明条件代码,将默认为无条件(AL)执行。,指令条件码表,4.2 指令集介绍,ARM指令集条件码,C代码:If(a b)a+;Elseb+;,对应的汇编代码:CMPR0,R1;R0与R1比较ADDHIR0,R0,#1;若R0R1,则R0=R0+1ADD
16、LSR1,R1,#1;若R01,则R1=R1+1,示例:,ARM指令小节目录,1.指令格式2.条件码3.存储器访问指令4.数据处理指令5.乘法指令6.ARM分支指令7.协处理器指令8.杂项指令9.伪指令,4.2 指令集介绍,ARM指令集存储器访问指令,ARM处理器是典型的RISC处理器,对存储器的访问只能使用加载和存储指令实现。ARM处理器是冯诺依曼存储结构,程序空间、RAM空间及I/O映射空间统一编址,除对RAM操作以外,对外围IO、程序数据的访问均要通过加载/存储指令进行。存储器访问指令分为单寄存器操作指令和多寄存器操作指令。,ARM存储器访问指令单寄存器加载,ARM存储器访问指令单寄存器
17、存储,LDR/STR指令用于对内存变量的访问、内存缓冲区数据的访问、查表、外围部件的控制操作等。若使用LDR指令加载数据到PC寄存器,则实现程序跳转功能,这样也就实现了程序散转。所有单寄存器加载/存储指令可分为“字和无符号字节加载存储指令”和“半字和有符号字节加载存储指令。,LDR和STR字和无符号字节加载/存储指令 LDR指令用于从内存中读取单一字或字节数据存入寄存器中,STR指令用于将寄存器中的单一字或字节数据保存到内存。指令格式如下:,ARM存储器访问指令单寄存器存储,LDRcondTRd,;将指定地址上的字数据读入Rd STRcondTRd,;将Rd中的字数据存入指定地址 LDRcon
18、dBTRd,;将指定地址上的字节数据读入Rd STRcondBTRd,;将Rd中的字节数据存入指定地址,其中,T为可选后缀。若指令有T,那么即使处理器是在特权模式下,存储系统也将访问看成是在用户模式下进行的。T在用户模式下无效,不能与前索引偏移一起使用T。,ARM存储器访问指令单寄存器存储,LDR和STR字和无符号字节加载/存储指令编码,指令执行的条件码,I为0时,偏移量为12位立即数,为1时,偏移量为寄存器移位,P表示前/后变址,U表示加/减,B为1表示字节访问,为0表示字访问,W表示回写,为指令的寻址方式,Rd为源/目标寄存器,Rn为基址寄存器,L用于区别加载(L为1)或存储(L为0),A
19、RM存储器访问指令单寄存器存储,LDR和STR字和无符号字节加载/存储指令 LDR/STR指令寻址非常灵活,它由两部分组成,其中一部分为一个基址寄存器,可以为任一个通用寄存器;另一部分为一个地址偏移量。地址偏移量有以下3种格式:立即数。立即数可以是一个无符号的数值。这个数据可以加到基址寄存器,也可以从基址寄存器中减去这个数值。如:LDR R1,R0,#0 x12 寄存器。寄存器中的数值可以加到基址寄存器,也可以从基址寄存器中减去这个数值。如:LDR R1,R0,R2 寄存器及移位常数。寄存器移位后的值可以加到基址寄存器,也可以从基址寄存器中减去这个数值。如:LDR R1,R0,R2,LSL#2
20、,ARM存储器访问指令单寄存器存储,从寻址方式的地址计算方法分,加载/存储指令有以下4种格式:零偏移。如:LDR Rd,Rn 前索引偏移。如:LDR Rd,Rn,#0 x04!程序相对偏移。如:LDR Rd,labe1 后索引偏移。如:LDR Rd,Rn,#0 x04注意:大多数情况下,必须保证字数据操作的地址是32位对齐的。,LDR和STR字和无符号字节加载/存储指令,LDR和STR半字和有符号字节加载/存储指令 这类LDR/STR指令可加载有符号半字或字节,可加载/存储无符号半字。偏移量格式、寻址方式与加载/存储字和无符号字节指令相同。,ARM存储器访问指令单寄存器存储,LDRcondSB
21、 Rd,;将指定地址上的有符号字节读入Rd LDRcondSH Rd,;将指定地址上的有符号半字读入Rd LDRcondH Rd,;将指定地址上的半字数据读入Rd STRcondH Rd,;将Rd中的半字数据存入指定地址,注意:1.有符号位半字/字节加载是指用符号位加载扩展到32位,无符号半字加载是指用零扩展到32位;2.半字读写的指定地址必须为偶数,否则将产生不可靠的结果;,ARM存储器访问指令单寄存器存储,LDR和STR半字和有符号字节加载/存储指令编码,指令执行的条件码,I为0时,偏移量为12位立即数,为1时,偏移量为寄存器移位,P表示前/后变址,U表示加/减,W表示回写,为指令的寻址方
22、式,Rd为源/目标寄存器,Rn为基址寄存器,L用于区别加载(L为1)或存储(L为0),S为1表示有符号访问,为0表示无符号访问,H为1表示半字访问,为0表示字节访问,LDR和STR指令应用示例:1.加载/存储字和无符号字节指令LDRR2,R5;将R5指向地址的字数据存入R2STRR1,R0,#0 x04;将R1的数据存储到R0+0 x04地址LDRBR3,R2,#1;将R2指向地址的字节数据存入R3,R2R2+1STRBR6,R7;将R7指向地址的字节数据存入R62.加载/存储半字和有符号字节指令LDRSB R1,R0,R3;将R0+R3地址上的字节数据存入R1,;高24位用符号扩展LDRH
23、R6,R2,#2;将R2指向地址的半字数据存入R6,高16位用0扩展;读出后,R2=R2+2STRH R1,R0,#2!;将R1的半字数据保存到R0+2地址,;只修改低2字节数据,R0=R0+2,ARM存储器访问指令单寄存器存储,ARM存储器访问指令多寄存器存取,多寄存器加载/存储指令可以实现在一组寄存器和一块连续的内存单元之间传输数据。LDM为加载多个寄存器;STM为存储多个寄存器。允许一条指令传送16个寄存器的任何子集或所有寄存器。它们主要用于现场保护、数据复制、常数传递等。,ARM存储器访问指令多寄存器存取,多寄存器加载/存储指令格式如下:LDMcond Rn!,reglist STMc
24、ond Rn!,reglistcond:指令执行的条件;模式:控制地址的增长方式,一共有8种模式;!:表示在操作结束后,将最后的地址写回Rn中;reglist:表示寄存器列表,可以包含多个寄存器,它们使用“,”隔开,如R1,R2,R6-R9,寄存器由小到大排列;:加入该后缀后,进行数据传送且寄存器列表不包含PC时,加载/存储的寄存器是用户模式下的,而不是当前模式的寄存器。若在LDM指令且寄存器列表中包含有PC时使用,那么除了正常的多寄存器传送外,还将SPSR也拷贝到CPSR中,这可用于异常处理返回。注意:该后缀不允许在用户模式或系统模式下使用。,ARM存储器访问指令多寄存器存取,LDM和STM
25、多寄存器加载/存储指令编码,指令执行的条件码,S对应于指令中的”符号,P表示前/后变址,U表示加/减,W表示回写,寄存器列表,Rn为基址寄存器,L用于区别加载(L为1)或存储(L为0),ARM存储器访问指令多寄存器存取,多寄存器加载/存储指令的8种模式如下表所示,右边四种为堆栈操作、左边四种为数据传送操作。,进行数据复制时,先设置好源数据指针和目标指针,然后使用块拷贝寻址指令LDMIA/STMIA、LDMIB/STMIB、LDMDA/STMDA、LDMDB/STMDB进行读取和存储。进行堆栈操作操作时,要先设置堆栈指针(SP),然后使用堆栈寻址指令STMFD/LDMFD、STMED/LDMED
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- arm 嵌入式 系统 基础教程
链接地址:https://www.31ppt.com/p-4849618.html