《统计学假设检验》PPT课件.ppt
《《统计学假设检验》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《统计学假设检验》PPT课件.ppt(113页珍藏版)》请在三一办公上搜索。
1、第 4 章 假设检验,第 4 章 假设检验,4.1 假设检验的基本问题 4.2 一个正态总体参数的检验4.3 两个正态总体参数的检验4.4 假设检验中的其他问题,假设检验在统计方法中的地位,学习目标,了解假设检验的基本思想 掌握假设检验的步骤对实际问题作假设检验利用P-值进行假设检验,4.1 假设检验的基本问题,假设检验的概念和思想假设检验的步骤小概率原理两类错误原假设预备择假设的确定假设检验中的P值,假设检验的概念与思想,假设检验的过程,假设检验的基本思想,.因此我们拒绝假设=50,样本均值,m,=50,抽样分布,H0,什么是假设检验?(hypothesis testing),再看一个例子:
2、某味精厂用一台包装机自动包装味精,已知袋装味精的重量XN(u,0.0152),机器正常时其均值u0=0.5公斤,某日开工后随机抽取9袋袋装味精,其净重为:0.497,0.506,0.518,0.524,0.498,0.511,0.520,0.515,0.512问这台机器是否正常?,什么是假设检验?(hypothesis testing),解:已知袋装味精的重量XN(u,0.0152),假设现在包装机工作正常,即提出如下假设:原假设H0:=0=0.5 备择假设H1:0=0.5当原假设为真时,什么是假设检验?(hypothesis testing),当原假设为真时,对于给定的很小的数0 1,例如=
3、0.05,有其中,Z a/2为标准正态分布上侧a/2分位数.,什么是假设检验?(hypothesis testing),可见,假设检验是一种带有概率性质的反证法.纯数学的反证法,是在假设成立的条件下推出逻辑上的绝对矛盾.这里所说的带有概率性质的反证法,是依据实际推断原理.即认为小概率事件在一次试验中几乎不可能发生.统计上的假设检验,即根据样本检验一个发生概率很小的事件是否发生,若发生了即认为假设有问题,则拒绝原假设.,参数假设检验与非参数假设检验,参数假设检验需要对总体分布作出某种假设,然后利用样本信息来判断关于总体的参数的原假设是否成立,效率高,但要求已知总体分布类型非参数假设检验则是一种不
4、依赖于总体分布的检验方法,检验条件较宽松,适应性强,但功效较低。(含总体的分布类型检验及独立性检验等),假设检验的步骤提出假设确定适当的检验统计量规定显著性水平计算检验统计量的值,判断落入拒绝域还是接受域作出统计决策,提出原假设和备择假设,什么是原假设?(null hypothesis)待检验的假设,又称“0假设”研究者想收集证据予以反对的假设3.总是有等号,或4.表示为 H0H0:某一数值 指定为=号,即 或 例如,H0:3190(克),什么是备择假设?(alternative hypothesis)与原假设对立的假设,也称“研究假设”研究者想收集证据予以支持的假设,总是有不等号:,或 表示
5、为 H1H1:某一数值,或 某一数值例如,H1:3190(克),或 3190(克),提出原假设和备择假设,什么是检验统计量?1.用于假设检验决策的统计量,要求分布完全已知.2.选择统计量的方法与参数估计相同,需考虑是大样本还是小样本总体方差已知还是未知等,确定适当的检验统计量,规定显著性水平(significant level),什么显著性水平?1.是一个概率值原假设为真时,拒绝原假设的概率表示为(alpha)常用的 值有0.01,0.05,0.104.由研究者事先确定,主要根据弃真和取伪的代价,作出统计决策,计算检验的统计量根据给定的显著性水平,查表得出相应的临界值z或z/2,t或t/2将检
6、验统计量的值与 水平的临界值进行比较得出接受或拒绝原假设的结论,假设检验中的小概率原理,假设检验中的小概率原理,什么小概率?1.在一次试验中,一个几乎不可能发生的事件发生的概率2.在一次试验中小概率事件一旦发生,我们就有较充足理由拒绝原假设3.小概率由研究者事先确定,假设检验中的两类错误(决策风险),假设检验中的两类错误,1.第一类错误(弃真错误)原假设为真时拒绝原假设会产生一系列后果第一类错误的概率为被称为显著性水平2.第二类错误(取伪错误)原假设为假时接受原假设第二类错误的概率为(Beta),H0:无罪,假设检验中的两类错误(决策结果),假设检验就好像一场审判过程,统计检验过程,错误和 错
7、误的关系,影响 错误的因素,1.显著性水平 当 减少时增大2.总体标准差 当 增大时增大3.样本容量 n当 n 减少时增大,原假设与备择假设的确定,双侧检验与单侧检验(假设的形式),原假设与备择假设的确定(单侧检验),将研究者想收集证据予以支持的假设作为备择假设H1例如,一个研究者总是想证明自己的研究结论是正确的一个销售商总是想证实供货商的说法是不正确的备择假设的方向与想要证明其正确性的方向一致将研究者想收集证据证明其不正确的假设作为原假设H0先确立备择假设H1,原假设与备择假设的确定(单侧检验),一项研究表明,采用新技术生产后,将会使产品的使用寿命明显延长到1500小时以上。检验这一结论是否
8、成立研究者总是想证明自己的研究结论(寿命延长)是正确的备择假设的方向为“”(寿命延长)建立的原假设与备择假设应为 H0:1500 H1:1500,原假设与备择假设的确定(单侧检验),一项研究表明,改进生产工艺后,会使产品的废品率降低到2%以下。检验这一结论是否成立研究者总是想证明自己的研究结论(废品率降低)是正确的备择假设的方向为“”(废品率降低)建立的原假设与备择假设应为 H0:2%H1:2%,原假设与备择假设的确定(单侧检验),某灯泡制造商声称,该企业所生产的灯泡的平均使用寿命在1000小时以上。如果你准备进一批货,怎样进行检验检验权在销售商一方作为销售商,你总是想收集证据证明生产商的说法
9、(寿命在1000小时以上)是不是正确的备择假设的方向为“”(寿命不足1000小时)建立的原假设与备择假设应为 H0:1000 H1:1000,显著性水平与拒绝域(双侧检验),显著性水平与拒绝域(双侧检验),显著性水平与拒绝域(双侧检验),显著性水平与拒绝域(左侧检验),显著性水平与拒绝域(左侧检验),显著性水平与拒绝域(右侧检验),显著性水平与拒绝域(右侧检验),假设检验中的 P 值,左侧检验的P 值,右侧检验的P 值,双侧检验的P 值,什么是P 值?(P-value),是一个概率值如果原假设为真,P-值是抽样分布中大于或小于样本统计量的概率左侧检验时,P-值为曲线上方小于等于检验统计量部分的
10、面积右侧检验时,P-值为曲线上方大于等于检验统计量部分的面积被称为观察到的(或实测的)显著性水平,利用 P 值进行检验(决策准则),单侧检验若p-值,不能拒绝 H0若p-值/2,不能拒绝 H0若p-值/2,拒绝 H0,4.2 一个正态总体参数的检验,检验统计量的确定总体均值的检验总体比例的检验总体方差的检验,一个总体参数的检验,总体均值检验,总体均值的检验(检验统计量),总体 是否已知?,总体均值的检验(2 已知或2未知大样本),1.假定条件总体服从正态分布若不服从正态分布,可用正态分布来近似(n30)使用Z-统计量2 已知:2 未知:,2 已知,均值的检验(例题分析),【例】某机床厂加工一种
11、零件,根据经验知道,该厂加工零件的椭圆度近似服从正态分布,其总体均值为0=0.081mm,总体标准差为=0.025。今换一种新机床进行加工,抽取n=200个零件进行检验,得到的椭圆度为0.076mm。试问新机床加工零件的椭圆度的均值与以前有无显著差异?(0.05),双侧检验,2 已知,均值的检验(例题分析),H0:=0.081H1:0.081=0.05n=200临界值(s):,检验统计量:,决策:,结论:,在=0.05的水平上拒绝H0,有证据表明新机床加工的零件的椭圆度与以前有显著差异,2 已知,均值的检验(P 值的计算与应用),第1步:进入Excel表格界面,选择“插入”下拉菜单第2步:选择
12、“函数”点击第3步:在函数分类中点击“统计”,在函数名的菜 单下选择字符“NORMSDIST”然后确定第4步:将Z的绝对值2.83录入,得到的函数值为 0.997672537 P值=2(10.997672537)=0.004654 P值远远小于,故拒绝H0,2 已知,均值的检验(小样本例题分析),【例】根据过去大量资料,某厂生产的灯泡的使用寿命服从正态分布N(1020,1002)。现从最近生产的一批产品中随机抽取16只,测得样本平均寿命为1080小时。试在0.05的显著性水平下判断这批产品的使用寿命是否有显著提高?(0.05),单侧检验,2 已知,均值的检验(小样本例题分析),H0:1020H
13、1:1020=0.05n=16临界值(s):,检验统计量:,在=0.05的水平上拒绝H0,有证据表明这批灯泡的使用寿命有显著提高,决策:,结论:,2 未知,大样本均值的检验(例题分析),【例】某电子元件批量生产的质量标准为平均使用寿命1200小时。某厂宣称他们采用一种新工艺生产的元件质量大大超过规定标准。为了进行验证,随机抽取了100件作为样本,测得平均使用寿命1245小时,标准差300小时。能否说该厂生产的电子元件质量显著地高于规定标准?(0.05),单侧检验,2 未知,大样本均值的检验(例题分析),H0:1200H1:1200=0.05n=100临界值(s):,检验统计量:,在=0.05的
14、水平上不能拒绝H0,不能认为该厂生产的元件寿命显著地高于1200小时H0:1200,决策:,结论:,原假设与备择假设的选择例题,H0:1200H1:1200=0.05n=100临界值(s):,检验统计量:,在=0.05的水平上不能拒绝H0,即不能认为该厂生产的元件寿命显著地低于1200小时H0:1200,决策:,结论:,总体均值的检验(2未知小样本),1.假定条件总体为正态分布2未知,且小样本2.使用t 统计量,2 未知小样本均值的检验(例题分析),【例】某机器制造出的肥皂厚度为5cm,今欲了解机器性能是否良好,随机抽取10块肥皂为样本,测得平均厚度为5.3cm,标准差为0.3cm,试以0.0
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 统计学假设检验 统计学 假设检验 PPT 课件
链接地址:https://www.31ppt.com/p-4848308.html