《结构方程模型》PPT课件.ppt
《《结构方程模型》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《结构方程模型》PPT课件.ppt(69页珍藏版)》请在三一办公上搜索。
1、,结构方程模型,一、结构方程模型简介1、什么是结构方程模型2、为什么使用结构方程模型3、结构方程模型的结构4、结构方程模型的优点5、结构方程模型中的变量6、结构方程模型常用图标,1、什么是结构方程模型 结构方程模型(Structural Equation Model)是基于变量的协方差矩阵来分析变量之间关系的一种统计方法。所以,有时候也叫协方差结构分析。我们的课程只考虑线性结构方程模型。结构方程模型常用于:验证性因子分析、高阶因子分析、路径及因果分析、多时段(multiwave)设计、单形模型(Simple Model)、及多组比较等。常用的分析软件有:LISREL、Amos、EQS、MPlu
2、s,2、为什么使用结构方程模型 很多心理、教育、社会等概念,均难以直接准确测量,这种变量称为潜变量(latent variable),如智力、学习动机、家庭社会经济地位等等。我们只能求其次,用一些外显指标(observable indicators),去间接测量这些潜变量。如:以语文、数学、英语三科成绩(外显变量),作为学业成就(潜变量)的指标。传统的统计方法不能有效处理这些潜变量,而结构方程模型则能同时处理潜变量及其指标。传统的线性回归分析容许因变量存在测量误差,但是要假设自变量是没有误差的。如:在 y=bx+e的模型中,x和y如都不能被准确测量的时候,变量之间的关系是不能估计的。,如:分析
3、自信(X)与外向(Y)之间的关系:用4个题目测量自信,4个题目测量外向。传统上先计算外向题目的总分(或者平均分)和自信题目的总分(或者平均分),再计算两个总分(或者平均分)的相关,这种计算所得的两个潜变量(外向和自信)的关系,不一定恰当,但是结构方程模型能提供更佳的答案(如典型相关分析等)。,自信,外向,x1,x2,x3,x4,y1,y2,y3,y4,模型举例,3、结构方程模型的结构结构方程模型可分为:测量模型和结构模型(1)测量模型:指标和潜变量之间的关系,说明:x,y是外源(如:六项社经指标)及内生(如:中、英、数成绩)指标。,是X,Y测量上的误差。x是x指标与潜伏变项的关系(如:六项社经
4、地位指标与潜伏社经地位的关系)。y是y指标与潜伏变项的关系(如:中、英、数成绩与学业成就间关系)。,(2)结构模型:潜变量之间的关系,内生(依变)(endogenous,dependent)潜伏变项(如:学业成就)外源(自变)(exogenous,independent)潜伏变项(如:社经地位)内生潜伏变项间的关系(如:学业成绩与其他内生潜伏变项的关系)外源变项对内生变项的影响(如:社经地位对学业成就)模式内未能解释部份(即模式内所包含的变项及变项间关系所未能解释部分),4、结构方程模型的优点 Bollen和Long(1993)指出SEM有以下优点:(1)可同时考虑及处理多个依变项(endog
5、enous/dependent variable);(2)容许自变及依变(exogenous/endogenous)项含测量误差;(3)与因素分析类同,SEM容许潜伏变项(如:社经地位)由多个观察指标变项(如:父母职业、收入)构成,并可同时估计指标变项的信度及效度(reliability and validity);(4)SEM可采用比传统方法更有弹性的测量模型(measurement model),如某一指标变项/题目从属于两潜伏因子;在传统方法,项目多依附单一因子;(5)研究者可构划出潜伏变项间的关系,并估计整个模式是否与数据拟合。,5、结构方程模型中的变量,潜变量显变量,内生变量外源变量
6、,变量指标,自变量因变量,潜变量:不可以直接观察的变量,或叫因子。如自 信、成就等。显变量:可以直接观察的变量,如收入、成绩等。,因子荷载,变量:具有多个值的概念。指标:测量某个变量的项目(item),或者叫条目。,内生变量:被影响的变量。外源变量:作用于其它变量的变量。,路径系数,自变量:仅有单向箭头指出的变量。因变量:只要有单向箭头指入的变量。,思考:显变量和指标是什么关系?变量与指标有什么区别?内生变量与因变量有什么区别?外源变量与自变量有什么区别?,二、结构方程模型建模及分析步骤1、模型构建2、模型拟合3、模型评价4、模型修正,模型构建,利用结构方程模型分析变量的关系,根据专业知识和研
7、究目的,构建出理论模型,然后用测得的数据去验证这个理论模型的合理性。建构模型包括指定:(1)观测变量与潜变量的关系;(2)各潜变量间的相互关系;(3)在复杂的模型中,可以限制因子负荷或因子相关系数等参数的数值或关系。,模型拟合,结构方程模型分析中的模型拟合目标是使模型隐含的协方差矩阵即模型的“再生矩阵”与样本协方差矩阵尽可能地接近。模型拟合中的参数估计方法有许多种,每种方法有自己的优点和适用情况。常用的参数估计方法包括:不加权的最小二乘法、广义最小二乘法、极大似然法、一般加权最小二乘法、对角一般加权最小二乘法等。目前极大似然法是应用最广的参数估计方法。,模型评价,评价一个刚建构成或修正的模型时
8、,主要检查(1)结构方程的解是否适当,包括迭代估计是否收敛、各参数估计值是否在合理范围内;(2)参数与预设模型的关系是否合理;(3)检视多个不同类型的整体拟合指数,如:绝对拟合指数有 2、RMSEA(root mean square error of approximation,近似误差均方根)、SRMR(standardized root mean square residual,标准化残差均方根)、GFI(goodness of fit index,拟合优度指数)、A GFI(adjusted goodness of fit index,调整拟合优度指数),以及相对拟合指数 NNFI(no
9、n-normed fit index 非范拟合指数)、NFI(normed fit index,赋范拟合指数)、CFI(comparative fit index,比较拟合指数)等,以衡量模型拟合程度。,模型修正,模型的修正主要包括:(1)依据理论或有关假设,提出一个或数个合理的先验模型;(2)检查潜变量与指标间的关系,建立测量方程模型;(3)若模型含多个因子,可以循序渐进地,每次只检验含两个因子的模型,确立测量模型部分合理后,最后再将所有因子合并成预设的先验模型,作总体检验;(4)对每一模型,检查标准误、标准化残差、修正指数、参数期望改变值、2 及各种拟合指数,据此修改模型。,三、结构方程模
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 结构方程模型 结构 方程 模型 PPT 课件
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-4848285.html