单片机课程设计论文数字温度计设计.doc
《单片机课程设计论文数字温度计设计.doc》由会员分享,可在线阅读,更多相关《单片机课程设计论文数字温度计设计.doc(22页珍藏版)》请在三一办公上搜索。
1、前言单片机自问世以来,性能不断提高和完善,其资源又能满足很多应用场合的需要,加之单片机具有集成度高、功能强、速度快、体积小、功耗低、使用方便、价格低廉等特点,因此,在工业控制、智能仪器仪表、数据采集和处理、通信系统、高级计算器、家用电器等领域的应用日益广泛,并且正在逐步取代现有的多片微机应用系统。单片机的潜力越来越被人们所重视。特别是当前用CMOS工艺制成的各种单片机,由于功耗低,使用的温度范围大,抗干扰能力强,能满足一些特殊要求的应用场合,更加扩大了单片机的应用范围,也进一步促使单片机性能的发展。而现在的单片机在农业上页有了很多的应用。 温度是日常生活、工业、医学、环境保护、化工、石油等领域
2、最常用到的一个物理量。测量温度的基本方法是使用温度计直接读取温度。最常见到得测量温度的工具是各种各样的温度计,例如:水银玻璃温度计,酒精温度计,热电偶或热电阻温度计等。它们常常以刻度的形式表示温度的高低,人们必须通过读取刻度值的多少来测量温度。利用单片机和温度传感器构成的电子式智能温度计就可以直接测量温度,得到温度的数字值,既简单方便,有直观准确。第一章 设计的要求及任务1.1传感器传感器是将感受到的外界信息,按照一定的规律转换成所需的有用信息的装置,它获取的信息可以是各种物理量、化学量和生物量,而转换后的信息也有各种形式。例如:光、温度、声、委位移、压力等物理量,可以通过传感器相互转化。但是
3、通常是将非电量或电量转换成易于处理和传输的电量,有些传感器的这种转换是可逆的,即输入量为电量而输出量为机械量或热工艺量等。1.2 任务与要求1.2.1 设计任务及指标1:设计任务:利用单片机和数字温度传感器,实现一个能精确测量并显示温度的实际应用系统,为低成本的数字温度测量系统设计提出一种新的解决方案。并需说明设计方案的构思依据、设计思路、系统原理、设计过程及系统工作流程图。2:技术指标: 系统稳定性高; 使用四位数码管显示温度值; 测量精度达0.1; 要求系统具备复位功能;第2章 智能温度传感器与单片机2.1 智能温度传感器的产品分类智能温度传感器采用了数字化技术,能以数据形式输出被测温度值
4、。其测温误差小、分辨率高、抗干扰能力强、能远程传输数据、用户可设定上、下限,具有越限自动报警功能并且带串行总线接口,适配各种微控制器。按照串行总线划分有单线总线(1Wire)、二线总线(含SMBUS、I2C总线)三线总线(含SPI总线)几种类型。典型产品有DS18B20(单线总线)、LM75(I2C总线)和LM75(SPI总线)。多通道智能温度传感器除具有内置温度传感器之外,还专门增加了若干个远程测温通道,通过在总线上接多片同种型号的芯片,很容易将通道扩展到几十路,这就为研制多路温度测控系统创造了便利条件。多通道智能温度传感器的典型产品有MAX1668、AD7417、AD7817、MAX180
5、5和LM83。2.2 智能温度传感器典型产品的技术指标智能温度传感器典型产品的技术指标,详见表21表2-1智能温度传感器典型产品的技术指标2.3 单片机AT89C2051的简介单片机AT89C2051 具有低电压供电和小体积等特点,两个端口刚好满足电路系统的设计需要,很适合便携式产品的设计使用,系统可用二节电池供电. AT89C2051 提供如下的标准功能:2KB 闪速存贮器,128B 内部RAM,15 根I/O 口引线,两个16 位定时器/计数器,一个五向量两极中断结构,一个全双工串行口,一个精密模拟比较器以及片内振荡器和时钟电路。此外,AT89C2051 采用可降到0 频率的静态逻辑操作设
6、计,并支持两种可选的软件节电工作方式,即空闲方式和掉电方式。在空闲方式下,CPU 停止工作,但允许内部RAM、定时器、计数器、串行口和中断系统继续工作。在掉电方式 下,保存RAM 的内容,但振荡器停止工作,并禁止所有其部件工作,直到下一个复位。 AT89C51 的结构框与AT89C51 类似。现将AT89C51 的主要特性归纳如下: 和MCS51 产品兼容。 2KB可重编程闪速存储器。 耐久性:1000次写/擦除周期。 2.76V的工作范围。 全静态操作:0Hz24MHz。 128字节内部RAM。2.4 单片机AT89C2051的引脚图 图2-2单片机AT89C2051引脚图第3章DS18B2
7、0数字温度计3.1 DS18B20温度传感器的性能特点DS18B20温度传感器是美国DALLAS半导体公司最新推出的一种改进型智能温度传感器,与传统的热敏电阻等测温元件相比,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现位的数字值读数方式。DS18B20的性能特点如下:独特的单线接口仅需要一个端口引脚进行通信;多个DS18B20可以并联在惟一的三线上,实现多点组网功能;无须外部器件;可通过数据线供电,电压范围为3.05.5;零待机功耗;温度以或位数字;用户可定义报警设置;报警搜索命令识别并标志超过程序限定温度(温度报警条件)的器件;负电压特性,电源极性接反时,温度计不会因发热而烧毁
8、,但不能正常工作;3.2 DS18B20温度传感器的内部结构框图及设置DS18B20采用脚PR35封装或脚SOIC封装,其内部结构框图如图4-1所示。 C64 位ROM和单线接口高速缓存存储器与控制逻辑温度传感器高温触发器TH低温触发器TL配置寄存器8位CRC发生器VddI/O图3-1 DS18B20内部结构64位ROM的结构开始位是产品类型的编号,接着是每个器件的惟一的序号,共有48位,最后位是前面56位的CRC检验码,这也是多个DS18B20可以采用一线进行通信的原因。温度报警触发器和,可通过软件写入户报警上下限。DS18B20温度传感器的内部存储器还包括一个高速暂存和一个非易失性的可电擦
9、除的EERAM。高速暂存RAM的结构为字节的存储器,结构如图4-2所示。头个字节包含测得的温度信息,第和第字节和的拷贝,是易失的,每次上电复位时被刷新。第个字节,为配置寄存器,它的内容用于确定温度值的数字转换分辨率。DS18B20工作时寄存器中的分辨率转换为相应精度的温度数值。该字节各位的定义如图3所示。低位一直为,是工作模式位,用于设置DS18B20在工作模式还是在测试模式,DS18B20出厂时该位被设置为,用户要去改动,R1和0决定温度转换的精度位数,来设置分辨率。温度 LSB温度 MSBTH用户字节1TL用户字节2配置寄存器保留保留保留CRC图3-2 DS18B20字节定义由表3-1可见
10、,DS18B20温度转换的时间比较长,而且分辨率越高,所需要的温度数据转换时间越长。因此,在实际应用中要将分辨率和转换时间权衡考虑。高速暂存的第、字节保留未用,表现为全逻辑。第字节读出前面所有字节的CRC码,可用来检验数据,从而保证通信数据的正确性。当DS18B20接收到温度转换命令后,开始启动转换。转换完成后的温度值就以16位带符号扩展的二进制补码形式存储在高速暂存存储器的第、字节。单片机可以通过单线接口读出该数据,读数据时低位在先,高位在后,数据格式以0.0625LSB形式表示。当符号位时,表示测得的温度值为正值,可以直接将二进制位转换为十进制;当符号位时,表示测得的温度值为负值,要先将补
11、码变成原码,再计算十进制数值。表4-2是一部分温度值对应的二进制温度数据。表3-1 DS18B20温度转换时间表 DS18B20完成温度转换后,就把测得的温度值与RAM中的TH、T字节内容作比较。若TH或TTL,则将该器件内的报警标志位置位,并对主机发出的报警搜索命令作出响应。因此,可用多只DS18B20同时测量温度并进行报警搜索。在64位ROM的最高有效字节中存储有循环冗余检验码(CRC)。主机ROM的前56位来计算CRC值,并和存入DS18B20的CRC值作比较,以判断主机收到的ROM数据是否正确。DS18B20的测温原理是这这样的,器件中低温度系数晶振的振荡频率受温度的影响很小,用于产生
12、固定频率的脉冲信号送给减法计数器;高温度系数晶振随温度变化其振荡频率明显改变,所产生的信号作为减法计数器的脉冲输入。器件中还有一个计数门,当计数门打开时,DS18B20就对低温度系数振荡器产生的时钟脉冲进行计数进而完成温度测量。计数门的开启时间由高温度系数振荡器来决定,每次测量前,首先将55所对应的一个基数分别置入减法计数器、温度寄存器中,计数器和温度寄存器被预置在55所对应的一个基数值。减法计数器对低温度系数晶振产生的脉冲信号进行减法计数,当减法计数器的预置值减到时,温度寄存器的值将加,减法计数器的预置将重新被装入,减法计数器重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到减法计
13、数器计数到时,停止温度寄存器的累加,此时温度寄存器中的数值就是所测温度值。其输出用于修正减法计数器的预置值,只要计数器门仍未关闭就重复上述过程,直到温度寄存器值大致被测温度值。表3-2一部分温度对应值表温度/二进制表示十六进制表示+1250000 0111 1101 000007D0H+850000 0101 0101 00000550H+25.06250000 0001 1001 00000191H+10.1250000 0000 1010 000100A2H+0.50000 0000 0000 00100008H00000 0000 0000 10000000H-0.51111 1111
14、1111 0000FFF8H-10.1251111 1111 0101 1110FF5EH-25.06251111 1110 0110 1111FE6FH-551111 1100 1001 0000FC90H另外,由于DS18B20单线通信功能是分时完成的,它有严格的时隙概念,因此读写时序很重要。系统对DS18B20的各种操作按协议进行。操作协议为:初使化DS18B20(发复位脉冲)发ROM功能命令发存储器操作命令处理数据。3.3DS18B20温度传感器与单片机的接口电路DS18B20可以采用两种方式供电,一种是采用电源供电方式,此时DS18B20的1脚接地,2脚作为信号线,3脚接电源。另一种
15、是寄生电源供电方式,如图4-3 所示单片机端口接单线总线,为保证在有效的DS18B20时钟周期内提供足够的电流,可用一个MOSFET管来完成对总线的上拉。当DS18B20处于写存储器操作和温度A/D转换操作时,总线上必须有强的上拉,上拉开启时间最大为10us。采用寄生电源供电方式时VDD端接地。由于单线制只有一根线,因此发送接口必须是三态的。 图3-3 DS18B20与单片机的接口电路第4章 数字温度计的设计4.1 总体设计方案在单片机电路设计中,使用传感器,是非常容易想到的,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。4.2
16、方案的总体设计框图温度计电路设计总体设计方框图如5-1所示,控制器采用单片机AT89C2051,温度传感器采用DS18B20,用3位LED数码管以串口传送数据实现温度显示。主 控 制 器LED显 示温 度 传 感 器单片机复位时钟振荡报警点按键调整 图4-1总体设计方框图4.2.1主控制器在第三章中已经提到单片机AT89C2051,在此详细介绍一下各引脚的功能及其有优点。单片机AT89C2051具有低电压供电和体积小等特点,四个端口只需要两个口就能满足电路系统的设计需要,很适合便携手持式产品的设计使用系统可用二节电池供电。AT89C2051 的引脚 AT89C2051 采用引脚双列直插式封装,
17、现将各引脚的功过能说明如下。 Vcc(20):电源电压端。 GND(10):地端。 RST(1):复位输入端。当RST 引脚出现两个机器周期的高电平时,单片机复位。复位后,AT89C2051 内部专用寄存器及I/O 口的处置与8051的情况一样,而内部的状态保 持不变。 XTAL1(5):振荡器反相放大器的输入和内部时钟发生器的输入端。 XTAL1(4):振荡器反相放大器的输出端。 P1 口:P1口是一个8位双向I/O 口。P1.2-P1.3 引脚内部接有上拉电阻。P1.0 和P1.1 分别作为片内精密模拟比较器的同相输入(AIN0)和反相输入(AIN1)。P1 口输出缓冲器可吸收20mA 电
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 单片机 课程设计 论文 数字 温度计 设计
链接地址:https://www.31ppt.com/p-4848010.html