单开关高增益升压变换器的仿真研究毕业论文.doc
《单开关高增益升压变换器的仿真研究毕业论文.doc》由会员分享,可在线阅读,更多相关《单开关高增益升压变换器的仿真研究毕业论文.doc(42页珍藏版)》请在三一办公上搜索。
1、摘要小功率光伏或燃料电池发电系统,因为电池电压很低,通常需要电压增益高达 10 倍以上的直流变换器将其升压后经逆变器输出。经典 Boost 变换器要实现高电压增益需宽占空比导通,然而宽占空比导通、高压输出下二极管反向恢复会造成严重的开关损耗与电磁干扰等问题;高匝比的反激变换器可以实现高电压增益,但在低压输入高压输出的场合原边匝数少,漏感大,需箝位电路限制开关器件电压应力, 能量不能高效地传输。 主要研究容如下:阐述了Flyback-Boost非隔离型高增益直流变换器工作原理,并在此基础上给出了各个元器件的参数设计,对比传统Boost直流变换器的优缺点,保留了传统 Flyback 变换器器件数目
2、少、电路结构简单的优点,同时又具有电压增益和效率高的特点,确定了基于串联技术直流变换器总体设计方案。分析了直流-直流变换器的动态特性,并对直流变换器进行了建模,然后根据得到的模型设计了合适的PI控制器,减少了动态响应时间,提高了噪声抑制性能,增强了系统的稳态特性。采用边界整定法试凑出满足要求的PID参数,给出了合理合乎指标要求的PID参数。对基于串联技术的直流变换器不同的工作模式进行了仿真调试,测试了在不同条件下的输出电压、电流波形。通过分析仿真结果,验证了该变换器的可行性,实现了高升压比和低纹波输出。关键词:高增益;反激升压;单开关管;低纹波AbstractLow power photovo
3、ltaic or fuel cell power generation system, because the battery voltage is low, usually need to dc converter voltage gain as much as more than 10 times of its booster after the inverter output.Classic Boost converter to achieve high voltage gain compared to wide conduction, however wide under the du
4、ty ratio conduction, high voltage output diode reverse recovery willcause serious switching loss and emi problem;High turn ratio of the flyback converter can achieve high voltage gain, but in place of low voltage input highvoltage output less the original edge number of turns, the leakage inductance
5、 of the big, need to clamp circuit limit switch voltage stress, energy of effective transmission.The main contents are as follows: elaborated Flyback-Boost non-isolated DC-DC converter works in high gain.On this basis, the design parameters of various components is calculated pared to advantages and
6、 disadvantages of the traditional Boost DC-DC converter, this device preserves the advantagesthe oftraditional Flyback converter device which are less number components ,small and simple circuit structure , but also has a high voltage gain and efficiency.So it determines this DC converter based on t
7、he cascade technology.Analysis of DC converter dynamic characteristic, and DC converter is modeled.It get design PI from controllerthe right model ,which can reduces the dynamic response time, improves noise immunity, and enhances the system Steady characteristic.Boundary setting method is used to m
8、ake the meet the requirements of PID parameters, gives the reasonable index requirements of PID parameters.Based on the series of DC converter technology different modes of simulation debugging, output voltage and current waveforms are tested under different conditions. By analyzing the simulation r
9、esults, the feasibility of the converter to achieve a high boost ratio and low output ripple.Key words: high gain;Flyback_boost;single_switch;low output ripple目录第1章 绪论11.1升压变换器的历史背景11.1.1 开发新能源的紧迫性与可再生能源的开发11.1.2 高增益变换器的现状21.1.3 开关单元高增益直流变换器21.1.4 耦合电感高增益直流变换器31.2传统的 Boost 变换器工作原理41.3 Flyback电路工作原理6
10、1.4 本文的研究容与意义7第2章Boost-flyback变换器82.1Boost-flyback变换器拓扑结构与工作过程82.1.1拓补结构与其工作原理82.1.2Boost-flyback拓扑工作过程分析92.2 Boost DC-DC变换器模型112.3 本章小结13第3章 电路参数计算与控制器设计143.1设计要求:143.2.主电路参数设计计算143.2.2 MOS管参数设计143.2.3 滤波电容参数设计153.2.4 电感值计算:163.2.5 Boost电路二极管设计163.3控制器设计163.3.1 控制器的应用背景163.3.2 控制器设计173.3.3 PID参数整定口
11、诀:183.3.4 试凑法求PI参数183.3.5 试凑数据总结:223.3.6 基于边界整定法的经验公式:223.4 本章小结23第4章 主电路的仿真与结果分析244.1 PSIM电力电子仿真软件244.2 仿真输出结果与分析254.2.1 仿真主电路254.2.2 变化的输入电压,输出电压的响应曲线284.2.3负载突加的实验仿真波形294.3 本章总结31第5章总结与展望325.1 全文总结325.2 后期展望32参考文献33致37第1章 绪论1.1升压变换器的历史背景1.1.1 开发新能源的紧迫性与可再生能源的开发升压式DCDC变换器在通信、电子、计算机等领域有着广泛的应用前景,光伏发
12、电领域中光伏组件模块输出电压低,为了将直流母线电压提升到常规电压以用来并网逆变,用的直流变换器必须具备高电压增益的特点,变换器的变换效率与光伏发电系统发电效率息息相关,因此,研究适合用于小功率场合、达到高电压增益、高效率要求的直流变换器成了急待解决的问题。许多学者为了解决这种新能源发电的高增益直流变换器出现的问题,提出了多种解决方案训。研究和实践表明,直接由太阳辐射到地球上的能量非常丰富,分布广泛,可以再生,而且不污染环境,每40秒钟就有相当于210亿桶石油的能量,相当于全球一天所消耗的能源,所以太阳能是国际社会公认的不可再生能源的理想替代源。全球发电业飞速发展,国际能源署预测:2020年,世
13、界光伏发电的量占总发电量的2%;到2040年,占总发电量的20%28%。在中国可再生能源中长期发展规划报告中明确提出:到2010年,太阳能发电总容量达到30万kW,到2020年达到180万kW,到2050年将达到60000万kW。相信随着光伏发电在中国的普与和推广应用,光伏发电系统的优化设计问题越来越受到社会的重视。最为清洁的可再生资源太阳能,具有非常大的优势和丰富的开发利用底蕴。从转换能量的方式,太阳能主要利用在个领域:光热转换(太阳能热力发电、太阳能灶、太阳能热水器、太阳能海水蒸馏器、太阳能清洁能源房等)光电转换(光伏发电系统)和光化学转换(太阳能制氢、制氧等),其中最为主要的应用形式是利
14、用太阳能光伏发电。近年来,对于利用太阳能来光伏发电技术进行了很深入的研究,所以取得了前所未有的发展,通过太阳能的光伏并网发电成为利用太阳能的主要方式之一。钻研利用光伏并网来发电的技术对延缓能源枯竭、促进生态环境和维持经济的可持续运转与发展具有重论和现实意义。一般来说光伏阵列电池的输出电压比较小,必须经过DC-DC 升压电路才能符合后级并网逆变器母线的标准。因为要提高整个系统的效率,必须选有高增益、高效率的特点的前级变换器来实现。图1-1实例原理演示图1.1.2 高增益变换器的现状现广泛采用的升压变换器电路可分为两类:一类是变压器隔离方式,典型电路是Boost 升压电路和Flyback 升压电路
15、;另一类是非隔离的 C 耦合式或开关式电容,Boost 电路的优点是可以是输入电流连续,并且在整个输入电压的正弦周期都可以调制,因此可以获得很高的功率因数,该电路的带你干电流即为输入电流,因而容易调节,同时开关管驱动信号与输出共地,股驱动简单,此外输入电流连续,开关管的电流峰值较小,因此对输入电压变化适应强。但是孰能电感在Boost 升压电路中起着极为关键的作用,一般而言,其电感值越大,匝数越多,阻抗就越大,这样就会容易引起电感饱和,发热量增加,严重威胁产品的寿命。同时受到开关管电压应力、变换效率等因素,限制了电路体积的进一步减小 ,同时分布参数也制约了其效率的提高的限制;后者电路简单,能高效
16、提供直流多路输出必须符合输出多组的要求,转换效率比较高,损失相对较小,比值较小的变压器匝数,输入电压可以很大的围波动,仍可有比较稳定的输出,目前已可在85265V交流输入 间.实现无需切换达到非常的稳定输出。输出电压具有较大的纹波,不高的负载调整精度,所以输出功率得到限制,通常应用于150W 以下;在电流连续下的转换变压器(Continuous Current Mode,CCM)模式下工作,有很大的直流分量,易引起磁芯饱和,可以在磁路中加入气隙来解决,从而使变压器体积偏大;变压器具有直流电流成份,会同时工作于CCM/DCM(Discontinuous Current Mode,DCM)两种模式
17、下,故在设计变压器时非常困难,迭代过程较繁琐。1.1.3 开关单元高增益直流变换器电感、电容作为储能元件,具有电源的性质,将开关管、二极管与储能元件相组合,构成开关单元,通过控制开关管导通/关断状态的切换,改变变换器中多个储能元件间的连接方式,可以达到高电压增益的效果。根据储能元件的不同,可分为基本的开关电感升压变换器与开关电容升压变换器,图 1.4(a)、1.4(b)分别为对应的拓扑结构。(A): 开关电感 Boost变换器当开关管S开通时,两个电感 L并联被输入电源 Vi充电,而当开关管 S 关断时,两个电感 L1、L2串联对负载释放能量。该变换器有如下优点:(1) 电感电流的减小使可以用
18、体积较的小单个电感;(2) 两个工作模态一致的电感,可以在一个磁芯之上放置;(3) 拓展了 Boost 变换器电压增益的特点。而此变换器缺点主要体现在:(1)因占空比不能过大的限制,该变换器的电压增益大部分情况不高于 10倍;(2)输出电压即为功率开关管的电压应力,这会给开关管带来非常大的导通电阻,因为具有较大的输入电流的高增益变换器,开关管会产生很大的导通损耗;输出电压即为输出端的二极管电压产生的应力,在硬关断的条件下,具有较大的反向恢复损耗。(B): 开关电容型Boost 变换器当开关管当S开通时,电容C2被充电,C1、C3对负载释放能量;开关管S关断,电容C2释放能量C1与C3被充电。该
19、变换器有如下优点:(1) 电压应力较低的变换器的功率开关管;(2) 承受较小的反向电压的输出侧二极管;(3) 比 Boost的电压增益变换器高两倍;(4) 输出侧很多电容间具有自均压的能力。该变换器缺点:(1) 受到占空比不能过大的限制,该电压增益一般不高于10;(2) 输入电流可以视为电感电流,考虑到变换器为低压大电流输入,具有较大体积的磁性器件;(3) 该变换器的功率开关管电流有效值过大,导通损耗的增大在一定程度上降低了整个系统的效率。(a)开关电感Boost变换器 (b)开关电容Boost变换器图1-2输出侧多电容串联结构耦合电感高增益直流变换器1.1.4 耦合电感高增益直流变换器同样的
20、,耦合电感的副边绕组具有电源的性质。与隔离型拓扑相似,增加耦合电感原副边绕组匝比 n,即可获得较大的电压增益,按照输出侧滤波电容的连接方式的不同,耦合电感高增益直流变换器可以分为输出侧多电容结构耦合电感高增益直流变换器以与输出侧单电容结构耦合电感高增益直流变换器。(A): 输出侧多电容结构耦合电感高增益直流变换器将 Boost 变换器的滤波电感作为耦合电感的原边绕组,再将副边绕组整流输出并与Boost输出电容串联,可以得到输出侧多电容结构耦合电感高增益直流变换器拓扑族。根据副边绕组整流形式的不同可以分为半波整流、半波倍压整流、全波整流、中心抽头整流、全波倍压整流结构。图 1.1(左)所示为耦合
21、电感采用半波整流形式而衍生出的 Boost-反激变换器的拓扑结构,变换器的输出电压为Boost 电路与反激电路输出之和,增加耦合电感的匝比n,可以获得很大的电压增益。随后,在Boost-反激变换器的基础上,图 1.1(右)所示的Boost-全波整流变换器被提出,改进了半波整流结构在电压增益、输出二极管电压应力等方面的不足。输出侧多电容结构耦合电感高增益直流变换器具有以下优点:(1) 开关管电压应力较低;(2) 无源箝位回路可以降低开关管电压应力,抑制电压尖峰;(3) 变换器电压增益可以通过提高耦合电感的匝比 n 进行扩展。图1-3输出侧单电容结构耦合电感高增益直流变换器输出侧多电容结构耦合电感
22、高增益直流变换器的缺点则是:(1) 耦合电感副边整流二极管电压应力过大;(2) 功率开关管电流应力较大。(B): 输出侧单电容结构耦合电感高增益直流变换器输出侧单电容结构耦合电感高增益直流变换器,合理的设置耦合电感的匝比 n,可以获得较大的变换器电压增益,漏感的能量通过二极管 D1以与箝位电容 Cc实现无损的转移;在此基础之上,提出了有源箝位的单电容输出耦合电感高增益变换器可以实现功率开关管以与箝位开关管的零电压开关,提高了开关频率。随后,多绕组耦合电感高增益变换器被提出,进一步扩大了电压增益。此类变换器具有以下优点:(1) 开关管电压应力较低;(2) 利用箝位回路耦合电感漏感能量可以被无损的
23、转移;(3) 变换器电压增益可以通过提高耦合电感的匝比 n 进行扩展。而该类变换器的缺点则是:耦合电感输出侧整流二极管电压应力过大。1.2传统的 Boost 变换器工作原理升压式变换器,是一种输出电压高于输入电压的单管非隔离直流变换器。Boost电路的优点是可以是输入电流连续,并且在整个输入电压的正弦周期都可以调制,因此可以获得很高的功率因数,该电路的电感电流即为输入电流,因而容易调节,同时开关管驱动信号与输出共地,驱动简单,此外输入电流连续,开关管的电流峰值较小,因此对输入电压变化适应强。但是储能电感在 Boost 升压电路中起着极为关键的作用,一般而言,其电感值越大,匝数越多,阻抗就越大,
24、这样就会容易引起电感饱和,发热量增加,严重威胁产品的寿命。同时受到开关管电压应力、变换效率等因素,限制了电路体积的进一步减小,同时分布参数也制约了其效率的提高的限制。经典 Boost 变换器要实现高电压增益需宽占空比导通,然而宽占空比导通、高压输出下二极管反向恢复会造成严重的开关损耗与电磁干扰等问题;高匝比的反激变换器可以实现高电压增益,但在低压输入高压输出的场合原边匝数少,漏感大,需箝位电路限制开关器件电压应力,能量不能高效地传输。图1-4 传统Boost拓扑图传统的Boost变换器的研究缺陷和如何改良:开通期间,二极管的反向恢复电流易使开关管通过浪涌电流,导致开通损耗并成为 EMI源。关断
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 开关 增益 升压 变换器 仿真 研究 毕业论文
链接地址:https://www.31ppt.com/p-4844822.html