北师大版七年级下册数学[三角形及其性质(提高)知识点整理及重点题型梳理].doc
《北师大版七年级下册数学[三角形及其性质(提高)知识点整理及重点题型梳理].doc》由会员分享,可在线阅读,更多相关《北师大版七年级下册数学[三角形及其性质(提高)知识点整理及重点题型梳理].doc(8页珍藏版)》请在三一办公上搜索。
1、精品文档 用心整理北师大版七年级下册数学重难点突破知识点梳理及重点题型巩固练习三角形及其性质(提高)知识讲解【学习目标】1. 理解三角形及与三角形有关的概念,掌握它们的文字、符号语言及图形表述方法2. 理解三角形内角和定理的证明方法毛;3. 掌握并会把三角形按边和角分类4. 掌握并会应用三角形三边之间的关系5. 理解三角形的高、中线、角平分线的概念,学会它们的画法6. 对三角形的稳定性有所认识,知道这个性质有广泛的应用【要点梳理】要点一、三角形的定义由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形 要点诠释:(1)三角形的基本元素:三角形的边:即组成三角形的线段;三角形的角:即相
2、邻两边所组成的角叫做三角形的内角,简称三角形的角; 三角形的顶点:即相邻两边的公共端点.(2)三角形的定义中的三个要求:“不在同一条直线上”、“三条线段”、“首尾顺次相接”.(3)三角形的表示:三角形用符号“”表示,顶点为A、B、C的三角形记作“ABC”,读作“三角形ABC”,注意单独的没有意义;ABC的三边可以用大写字母AB、BC、AC来表示,也可以用小写字母a、b、c来表示,边BC用a表示,边AC、AB分别用b、c表示要点二、三角形的内角和 三角形内角和定理:三角形的内角和为180要点诠释:应用三角形内角和定理可以解决以下三类问题:在三角形中已知任意两个角的度数可以求出第三个角的度数;已知
3、三角形三个内角的关系,可以求出其内角的度数;求一个三角形中各角之间的关系要点三、三角形的分类1.按角分类:要点诠释:锐角三角形:三个内角都是锐角的三角形;钝角三角形:有一个内角为钝角的三角形.2.按边分类:要点诠释: 不等边三角形:三边都不相等的三角形;等腰三角形:有两条边相等的三角形叫做等腰三角形,相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫顶角,腰与底边夹角叫做底角;等边三角形:三边都相等的三角形.要点四、三角形的三边关系定理:三角形任意两边之和大于第三边.推论:三角形任意两边之差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形
4、,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形当已知三角形两边长,可求第三边长的取值范围(3)证明线段之间的不等关系要点五、三角形的三条重要线段三角形的高、中线和角平分线是三角形中三条重要的线段,它们提供了重要的线段或角的关系,为我们以后深入研究三角形的一些特征起着很大的帮助作用,因此,我们需要从不同的角度弄清这三条线段,列表如下:线段名称三角形的高三角形的中线三角形的角平分线文字语言从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段三角形中,连接一个顶点和它对边中点的线段三角形一个内角的平分线与它的对边相交,这个角的顶点与交点之间
5、的线段图形语言作图语言过点A作ADBC于点D取BC边的中点D,连接AD作BAC的平分线AD,交BC于点D标示图形符号语言1AD是ABC的高2AD是ABC中BC边上的高3ADBC于点D4ADC90,ADB90(或ADCADB90)1AD是ABC的中线2AD是ABC中BC边上的中线3BDDCBC4点D是BC边的中点1AD是ABC的角平分线2AD平分BAC,交BC于点D312BAC推理语言因为AD是ABC的高,所以ADBC(或ADBADC90)因为AD是ABC的中线,所以BDDCBC因为AD平分BAC,所以12BAC用途举例1线段垂直2角度相等1线段相等2面积相等角度相等注意事项1与边的垂线不同2不
6、一定在三角形内与角的平分线不同重要特征三角形的三条高(或它们的延长线)交于一点一个三角形有三条中线,它们交于三角形内一点一个三角形有三条角平分线,它们交于三角形内一点要点六、三角形的稳定性 三角形的三条边确定后,三角形的形状和大小就确定不变了,这个性质叫做三角形的稳定性。 要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变(2)三角形的稳定性在生产和生活中很有用例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形大桥钢架、输电线支架都采用三角形结构,也是这个道理(3)四边形没有稳定性,也
7、就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺有时我们又要克服四边形的不稳定性,如在门框未安好之前,先在门框上斜着钉一根木板,使它不变形【典型例题】类型一、三角形的内角和1在ABC中,若ABC,试判断该三角形的形状【思路点拨】由ABC,以及A+B+C180,可求出A、B和C的度数,从而判断三角形的形状【答案与解析】解:设Ax,则B2x,C3x 由于A+B+C180,即有x+2x+3x180 解得x30故A30B60,C90 故ABC是直角三角形【总结升华】本题利用设未知数的方法求出三角形三个内角的度数,解法较为巧妙举一
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三角形及其性质提高知识点整理及重点题型梳理 北师大 年级 下册 数学 三角形 及其 性质 提高 知识点 整理 重点 题型 梳理
链接地址:https://www.31ppt.com/p-4833560.html