本科液下搅拌机器人的设计.doc
《本科液下搅拌机器人的设计.doc》由会员分享,可在线阅读,更多相关《本科液下搅拌机器人的设计.doc(51页珍藏版)》请在三一办公上搜索。
1、本 科 毕 业 论 文第一章 概述1.1 课题背景及选题意义1.1.1 课题背景及来源随着环保意识的增强和科学技术的发展,水煤浆作为一种新型的燃料代替重油煤粉将被广泛应用。但水煤浆与油的特性不同,它是两相流的流体,悬浮物为颗粒状物质,随着储存时间的增加,悬浮物必然下沉,虽然在水煤浆中含有稳定剂,但储存时间长了以后,储存在设备中的水煤浆上下浓度不一致,以致发生软沉淀现象。目前采用的时机械式搅拌,但该装置体积大而笨重,能耗多。研发一种在罐底行进巡逻的机器人,除有搅拌的基本功能外,还能监测到可能发生沉淀的区域,并自行调整路径到达目的地,与原有装置有显著的优势。本课题来源于北京市教育委员会科技发展计划
2、的工业机器人研究项目,本项目的研究包括机械设计、机电系统自动控制、测试传感技术、位置识别系统、信息技术、计算机仿真等多学科内容,本课题是该项目的一部分,主要內容为:搅拌机器人的智能控制系统方法的研究。本项目拟研发的搅拌机器人可代替大型储浆罐中传统笨重的机械式搅拌装置,在占地、安装、维修、智能化等方面都有显著优势,从而提高生产的现代化水平,产生较大的社会经济效益。1.1.2 国内外水煤浆防沉淀技术的发展状况70年代的石油危机给以石油为主要能源的西方各国以很大冲击,人们纷纷研究以煤代替油的策略,煤炭是一种重要的能源,可以直接燃用,然而这种固体燃料不像石油和天然气那样便 于燃烧、储存与输送,其燃烧效
3、率、使用方便性以及对环境的污染等都劣于石油。现有燃油系统要直接改烧固体煤炭是不可能的。所以需要寻找一种煤基流体燃料来代替油。水煤浆是由煤粉和水混合而成的似流体燃料。精细水煤浆,是一种平均粒径小于10m,粘度0.3-0.4Pa.s,浓度50%左右,灰分低于1%,基本属于牛顿流体的煤水混合物1。这种精细水煤浆可代替柴油用于内燃机和燃气轮机。因此,水煤浆是未来最有希望的以煤代油的燃料。目前不少国家正在大力研究水煤浆代替油的问题。图1-1 机械式搅拌机图1-1 机械式搅拌机随着我国新型能源燃烧技术的成熟,自七五期间始,水煤浆技术的发展已进入到工业应用阶段。无论是水煤浆的制备厂和用户,都需要设置水煤浆储
4、罐,用于储备一定量的水煤浆。水煤浆可以代替重油和煤粉燃料,但是与油的特性不一样,它是两相流的流体,悬浮物为颗粒状物质,虽浆中含有稳定剂,但随着储存时间的增加,悬浮物必然下沉,储罐中浆液上下浓度不一致,以致于发生软沉淀。目前,国外大型水煤浆储罐均采用机械式搅拌机以防止水煤浆产生软沉淀(见图示1-1),其搅拌机有立式、侧式两种。如瑞典设计的5000吨储罐,其立式搅拌机装置安装在罐顶中心,其叶轮直径为3m,传动功率为55kw。俄罗斯设计的20000吨储罐,底部装有台侧式搅拌机,每台功率为17kw2。在我国水煤浆生产和应用规模还很小,对防止水煤浆产生软沉淀也还未有成熟的经验,在参照国外使用技术的基础上
5、,我国自行设计、研制出几种搅拌形式主要有以下几种:1. 空气搅拌方式如长春保温材料厂250吨水煤浆储罐,该储罐为钢结构,直径6.5m,高7.87m,为平顶锥底罐,罐底坡度8度。绕储罐外壁等角设两种不同长度,交错布置共12根1寸压缩空气管,通过压缩空气,使煤浆产生翻腾,防止软沉淀产生。经现场装浆试验,搅拌效果良好,其缺点是噪音大,需要有压缩空气机装置,动力源不统一等。2. 打循环搅拌方式如枣庄矿务局八一矿水煤浆制备厂1500吨水煤浆储罐,该储罐为高架式钢筋混凝土框架筒体结构,罐内径12.5m,高29.1m,罐底部高出地面14m,锥底罐,罐底坡度4.5度。在罐下部装有3台QGB380.2/2型曲杆
6、泵,在罐壁分四个水平装有喷嘴,每一水平装3个喷嘴,用管道将曲杆泵与喷嘴相连,启动泵后,可使煤浆沿罐底和罐壁圆周方向流动,防止软沉淀产生。经现场装浆试验,搅拌效果良好,其缺点是动力消耗太大,并且有少量死角不易循环到,曲杆泵磨损严重。3. 立式机械搅拌方式如门头沟矿务局城子矿水煤浆制备厂5000吨水煤浆储罐,该储罐为钢结构,直径19m,高19m,为平顶锥底罐,罐底坡度为1:40。在罐顶中心装有一台立式搅拌机,其叶轮直径为3m,传动轴长14m,电机功率55kw,并装有导流板,通过搅拌机转动,使煤浆产生上下对流运动,防止软沉淀产生。大型立式中心搅拌机国内的生产厂家为江苏张家港市伟业机械制造有限公司。其
7、主要型号为LMJ55,LMJ75。经现场装浆试验,搅拌效果很好,并且没有死角,其缺点是设备结构复杂,传动轴太长,不易加工,需要分段制作。而且要求储罐为平顶结构形式,给大直径储罐设计带来一定的难度。4. 侧式机械搅拌方式如山东白杨河发电厂改烧水煤浆工程两座3000吨水煤浆储罐,该储罐为钢结构,直径15m,高15m,为平底拱顶罐,在罐侧壁装有三台侧式搅拌机,其叶轮直径0.38m,电机功率18.5kw,叶轮转数n=420r/min,摆动角度左30度-右30度。通过搅拌机转动,使煤浆产生旋转及水平方向的左右对流运动,防止软沉淀产生。经现场装装试验,搅拌效果很好,并且没有死角。其缺点是,因搅拌器装在储罐
8、侧壁,设备密封要求高。因此,在使用时应注意维修,以防泄漏。现将侧式搅拌机的工作原理及布置形式做一简要介绍。(1)搅拌机外形见图示1-2。 图1-2 侧式机械搅拌机(2)搅拌原理:搅拌器系侧入式船用三叶螺旋桨推进型搅拌机,由于螺旋桨叶片的推动,使浆体产生三个基本流,即轴向流、旋转流、湍流。把这三种流动分解为轴向部分(轴向流)和非轴向部分(旋转或螺旋流)。由于浆流的螺旋作用,螺旋形高速流使低速流动区域的浆体被携带进入高速浆流区,从而起到对混合有利的均质作用。同时,由于螺旋浆式搅拌机除有轴向流以外,还有法向推力形成的非轴向流,因而造成浆体的上下翻腾,以防止煤浆沉淀。以上四种搅拌形式,是我国目前在水煤
9、浆生产及应用领域中所使用的。1. 机器人车体 2. 回转耙轮3. 车轮 4. 轴流泵图1-3 液下搅拌机器人1.2 液下搅拌机器人的技术状况及结构方案确定1.2.1 技术状况水煤浆代油技术是近些年国际国内进行新型洁净燃料开发的热点,我国连续4个五年计划进行了重点攻关,现已技术成熟并开始工业推广,北京已有2座年产25万吨的生产厂。大型制浆设备是水煤浆技术的重要内容。但是分析目前国内外水煤浆搅拌方式可知,单纯机械搅拌装置具有体积大、笨重、能耗多等缺点,因此如能研发出在罐底行走巡逻的机器人(见图示1-3),除有搅拌的基本功能外,还能监测到可能发生沉淀的区域,并自行调整路径达到目的地,则将比原有装置具
10、有显著的优势。1.2.2 机器人的结构方案分析1机器人行走机构方案的确定轮式行走机器人移动机构的组成方式可用3轮机构或4轮机构。其中3轮机构稳定性差,而本机器人工作环境是在液体中,不容易校正其位姿;而4轮行走机构由于其稳定性好、运动灵活、易于控制等优点被采纳。4轮移动机器人的驱动基本结构主要有如下几种方式:(1)汽车驱动方式:其特点是一个马达作为动力,通过后面的差速器驱动,另一个马达带动前面的两个轮子改变方向。优点是适合于高速行走,稳定性好,在不平的路面上性能较好,容易控制;缺点是不能在原地转动,机械结构相对复杂。(2)2轮驱动方式:一种是4轮呈长方形形状分布,2前轮独立驱动,2后轮是万向轮,
11、机械结构简单,且稳定性好,还能够实现转向半径为0的运动;另一种是4轮呈菱形分布,位于车体中部的左右2轮独立驱动,位于车体纵向轴线上的前后2轮为辅助轮方式,其优点是当旋转半径为0时,能绕车体自身中心旋转,所以有利于在狭窄的场所改变方向。缺点是跟3轮机构一样稳定性不好,容易倾翻。(3)4轮驱动方式:优点是通过4个轮子各自独立旋转来转向,可以更好地适应粗糙路面,但是机械结构复杂,每个轮子都需操纵并提供动力,多马达难以控制。经过对上述几种方案的分析比较,考虑本课题中机器人的工作环境是液下平坦罐底,没有障碍物,其运动方式主要有圆周运动以及原地掉头运动,要求转弯灵活,稳定性好,控制简单等特点,方案(2)中
12、4轮呈长方形分布的2轮驱动方式是一种较佳选择。2机器人耙轮机构机器人的搅拌功能主要通过吸入和喷出浆液的方式造成浆液的流动状态来实现。吸入装置可采用回转耙轮推送浆液从而保证喷浆机构入口的流速,形成车体内外的压强差。回转耙轮的工作原理跟螺旋输送机的原理一样,即通过螺旋转动实现浆液的输送。参考螺旋输送机型式,螺旋面型有实体面型、带式面型、叶片面型等型式。实体面型螺旋适合输送干燥的、粘度小的小颗粒或粉状物料;带式面型适于输送散粒物料和作搅拌用;叶片面型螺旋适于输送块状或粘度中等的物料,可以作混合和搅拌作用。因此本项目可以采用带式和叶片式2种面型。3 机器人喷浆搅拌机构采用轴流泵使浆液沿泵轴线方向自下而
13、上流动,并以一定压头喷出,会产生高效的搅拌浆液效果。轴流泵具有耗能小、效率高、流量大、高比转速、使用维修方便的特点而被采用。轴流泵的主要构造为螺旋桨式叶轮,轮叶为流线型弯翼,当泵轴带动叶轮高速回转时,弯形叶片对液体产生轴向推力,而使泵壳内的液体不断回旋上升,从泵的出料口排出。在实现机器人的搅拌功能时,为了保持机器人车体内液体流动顺畅,设计时保持回转耙轮和轴流泵的液体处理量基本相等。4机器人控制系统控制系统是机器人研发的核心技术,主要控制对象是对行走轮的行走控制、轴流泵和回转耙轮的工作状态。对小车进行的行走控制,包括对车体行走路径、车轮速度和方向的控制。在搅拌时要求机器人小车能够根据浆液环境的不
14、同而自行调整行走路径,因此设计控制系统时,还要求机器人具有定位识别功能,并能随时监测浆液浓度分布并根据浆液浓度不同调整行走路径。可采用伺服电机和工控机控制系统,并设计保证电器箱在液下环境中的密封可靠性。1.3 本课题设计任务液下搅拌机器人的开发和研制属于北京市教育委员会科技发展计划项目,根据用浆液下搅拌机器人代替单纯机械式搅拌装置,机器人在结构上小巧、灵活、能耗少,浆液搅拌均匀等的要求,该机器人的基本功能主要包括液下行走、搅拌浆液、路径规划与控制及观测浆液浓度等四个基本模块。本课题的设计任务有以下几点:(1)了解液下搅拌机器人控制系统硬件结构(2)针对控制系统硬件结构对液下搅拌机器人控制系统进
15、行软件设计(3)液下搅拌机器人行走路径规划;(4)液下搅拌机器人运动仿真。第二章 基于PMAC的液下搅拌机器人试验装置的控制系统2.1 可编程多轴控制器综述当前,开发设计具有柔性。模块化、高性能的基于PC的智能化,基于这点考虑,本课题以PMAC为运动控制核心,利用其硬件结构、软件结构的开放性,开发出基于PMAC的液下搅拌机器人控制系统。PMAC是美国delatatau公司的产品,是集运动轴控制,和PLC控制以及数据采集的多功能的运动控制产品。在运动控制领域经过二十几年的探索,Delatatau 成功地将Motorola的DSP56001芯片用于PMAC,加上专用的用户门阵列芯片,结合PC的柔性
16、,似的PMAC具有全面的开放性。2.1.1 硬件结构的开放性1. 适应多种硬件操作平台,可在IBM及其兼容机上运行,在WIN98、WinNT/2000及Linux下运行及开发,具有PC、STD、VME、PCI、104总线及串口脱机运行的功能,方便用户选用合适自己的主机。同时,底层的控制程序只针对PMAC,所以统一控制软件可以在不同的硬件平台上运行。2.AC适用于所有电动机,包括普通的交流电动机、直流电动机、交直流伺服电动机、步进电机、直线电动机、陶瓷电动机等,也适用于液压马达,对于不同的电动机,PMAC可提供相应的PWM、PFM、Pulse+Dir等控制信号。1) PMAC可接受各种检测元件的
17、反馈,包括测速发电机、旋转变压器、激光干涉仪、并行数据、光电编码器、磁致伸缩位移传感器、光栅尺等。2) PMAC的绝大部分地址向用户开放,包括电动机的所有信息、坐标系的所有信息及各种保护信息等。因此,系统的设计和选型灵活自如,不受限制,可将各种先进的设计理念融入系统,而且同一系统可选用不同的电动机,接受不同的反馈信息。2.1.2 软件结构的开放性1.各种高级语言 PMAC控制器提供16位、32位的DLL,还有ActiveX控件PTALK,用户可使用C+、VB、VC、Delphi在Win98/NT2000下开发自己的人机界面接口。2.机器人语言的开放 PMAC控制器不但在硬件上具备开放性,而且可
18、支持用户调用现成的直线、圆弧、样条、PVT三次曲线等差补模式,同时支持标准的RS274代码,另外用户可以自定义G代码、P代码、M代码、I代码、Q代码,实现以往不能完成的功能。3.PLC功能的全部开放 PMAC内置了PLC功能,一般可将I/O扩展到1024入和1024出,可以编写64个异步PLC程序,对I/O的操作几乎使纯软件的工作,通过类似于汇编语言的指针变量,可以让用户按位、字节、进行控制。控制系统硬件主要包括:工控机、光电编码器、命令解释卡、PMAC卡、伺服电机、减速器等。4.可同其他相关软件接口 PMAC控制器虽然插在PC的扩展槽中,但其对轴的控制,对I/O的控制使控制器自身完成的,所以
19、PC可共享目前相当成熟的AutoCAD等绘图软件,方便工艺编程。2.1.3 PMAC主要功能与基本接口PMAC就是一台完整的计算机,它可以通过存储在自己内部的程序进行单独的操作。此外,他还是一台实时的、多任务的计算机,能自动对人物进行优先等级判别,从而使具有高的优先等级的任务比优先等级的任务能先被执行。PMAC的主要功能如下:1.执行运动程序PMAC最主要的任务就是按照运动程序顺序地执行程序。当执行运动程序时,PMAC一次执行程序地一条指令,进行该运动命令(包括非运动的任务)地所有计算,从而位执行该运动作好准备。PMAC总是工作在实际运动之前,并根据需要正确地协调与即将执行地动作。2.PLC程
20、序在PMAC中,PLC程序地工作方式与可编程逻辑控制器相似,主要用于任何运动程序运行的同时,在后台进行监视和计算,在处理器时间允许地情况下尽可能快地连续扫描他们的操作。3.伺服环更新在自动执行的任务中,PMAC对于每一台电机都以一个固定的频率对其进行伺服更新,即先根据运动程序或别的运动命令得到要求的位置增量,然后将其与反馈回来的实际位置相比较,最后在两者的差的基础上发出一个输出命令使此差值变小,如此反复,直到此差值令人满意为止。4.换相更新如果PMAC对一台多相电机进行换相运动,那么它会自动的以一个固定的频率进行换相更新。5.资源管理PMAC会定期自动的执行资源管理的功能,以确定整个系统是处于
21、正常的工作状态下。这些功能包括:随动误差限制,硬(软)件超行程限制,放大器出错,看门狗计时器的更新等。6.与主机通讯PMAC可在任何时间与主机通讯,甚至是在一个运动序列的中间。PMAC将接受一个命令,然后采取相应的动作,将命令放入一个程序缓冲区 以便以后的执行,提供数据以响应主机,开始电机的移动,等等。如果命令是非法的,它将会向主机报错。7.任务优先级任务是按照优先级电路组织起来的,这可以使得以最优化,从而让应用程序有效、安全的运行。当优先级固定下来以后,不同任务得以执行频率是在用户的控制下的。2.2. ACC-8S简介2.2.1 ACC-8S的基本结构ACC8S脉冲加方向输出,编码器选择反馈
22、。PMAC2的ACC-8S是一个为了方便的连接到推进驱动而设计的2-轴的输出电路板,步骤和方向输出和RS422是一致的,而且可以很方便的连接到不同模图21 ACC8S基本结构式或单个的5伏的终端配置的输入驱动上。输入终端标志是为了连接12V-14V的传感器或者限制开关。PMAC2可以利用ACC-8S的V型信号来关闭电机的位置循环。跳转器的应用是为了可以应用外部的编码器来保证一个可靠的关闭-循环控制。作为一个2-轴附件,速度循环编码器输入可以在只有一个输出驱动使用的情况下使用。ACC-8S是一系列PMAC2的I/O(输入/输出)附件之一PMAC2的接口用JMACH连接集线器做成。这个集线器被电路
23、板支持,24寸长.当我们用ACC-8S的时候, PMAC2输出一个变频的固定波长的脉冲波.这个理论就就是脉冲速率调节(PFM)。2.2.2 ACC-8S与PMAC通讯PMAC对ACC8S的访问是通过特定形式的M变量来实现的,这就TWS格式的M变量。系统对于ACC8S的相应操作是通过PMAC本身自带的PLC程序来来实现的。用户可以将编写好的PLC程序保存在PMAC中,设定每次PMAC加电时自行启动或者在控制软件中手动开启PLC程序。在编写ACC8S的PLC程序时,通常都是通过设定变量的方式来实现对输入输出断口每一位的操作,具体可以参见ACC8S使用手册。第三章 液下搅拌机器人控制系统软件设计3.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 本科 搅拌 机器人 设计

链接地址:https://www.31ppt.com/p-4826122.html