初三数学锐角三角函数的专项培优练习题及答案.doc
《初三数学锐角三角函数的专项培优练习题及答案.doc》由会员分享,可在线阅读,更多相关《初三数学锐角三角函数的专项培优练习题及答案.doc(27页珍藏版)》请在三一办公上搜索。
1、初三数学锐角三角函数的专项培优练习题及答案一、锐角三角函数1如图,某无人机于空中处探测到目标的俯角分别是,此时无人机的飞行高度为,随后无人机从处继续水平飞行m到达处.(1)求之间的距离(2)求从无人机上看目标的俯角的正切值.【答案】(1)120米;(2).【解析】【分析】(1)解直角三角形即可得到结论;(2)过作交BC的延长线于E,连接,于是得到, ,在RtABC中,求得DC=AC=20,然后根据三角函数的定义即可得到结论【详解】解:(1)由题意得:ABD=30,ADC=60,在RtABC中,AC=60m,AB=120(m)(2)过作交BC的延长线于E,连接,则, ,在RtABC中, AC=6
2、0m,ADC=60,DC=AC=20DE=50tanAD= tanDC=答:从无人机上看目标D的俯角的正切值是【点睛】本题考查了解直角三角形的应用,添加辅助线建立直角三角形是解题的关键.2小红将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120时,感觉最舒适(如图1),侧面示意图为图2;使用时为了散热,她在底板下面垫入散热架ACO后,电脑转到AOB位置(如图3),侧面示意图为图4已知OA=OB=24cm,OCOA于点C,OC=12cm(1)求CAO的度数(2)显示屏的顶部B比原来升高了多少?(3)如图4,垫入散热架后,要使显示屏OB与水平线的夹角仍保持120,则显示屏OB
3、应绕点O按顺时针方向旋转多少度?【答案】(1)CAO=30;(2)(3612)cm;(3)显示屏OB应绕点O按顺时针方向旋转30【解析】试题分析:(1)通过解直角三角形即可得到结果;(2)过点B作BDAO交AO的延长线于D,通过解直角三角形求得BD=OBsinBOD=24=12,由C、O、B三点共线可得结果;(3)显示屏OB应绕点O按顺时针方向旋转30,求得EOB=FOA=30,既是显示屏OB应绕点O按顺时针方向旋转30试题解析:(1)OCOA于C,OA=OB=24cm,sinCAO=,CAO=30;(2)过点B作BDAO交AO的延长线于D,sinBOD=,BD=OBsinBOD,AOB=12
4、0,BOD=60,BD=OBsinBOD=24=12,OCOA,CAO=30,AOC=60,AOB=120,AOB+AOC=180,OB+OCBD=24+1212=3612,显示屏的顶部B比原来升高了(3612)cm;(3)显示屏OB应绕点O按顺时针方向旋转30,理由:显示屏OB与水平线的夹角仍保持120,EOF=120,FOA=CAO=30,AOB=120,EOB=FOA=30,显示屏OB应绕点O按顺时针方向旋转30考点:解直角三角形的应用;旋转的性质3(6分)某海域有A,B两个港口,B港口在A港口北偏西30方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B
5、港口南偏东75方向的C处,求该船与B港口之间的距离即CB的长(结果保留根号)【答案】【解析】试题分析:作ADBC于D,于是有ABD=45,得到AD=BD=,求出C=60,根据正切的定义求出CD的长,得到答案试题解析:作ADBC于D,EAB=30,AEBF,FBA=30,又FBC=75,ABD=45,又AB=60,AD=BD=,BAC=BAE+CAE=75,ABC=45,C=60,在RtACD中,C=60,AD=,则tanC=,CD=,BC=故该船与B港口之间的距离CB的长为海里考点:解直角三角形的应用-方向角问题4如图(9)所示(左图为实景侧视图,右图为安装示意图),在屋顶的斜坡面上安装太阳能
6、热水器:先安装支架和(均与水平面垂直),再将集热板安装在上.为使集热板吸热率更高,公司规定:与水平面夹角为,且在水平线上的射影为.现已测量出屋顶斜面与水平面夹角为,并已知,如果安装工人确定支架高为,求支架的高(结果精确到)?【答案】【解析】过作于,根据锐角三角函数的定义用1、2表示出DF、EF的值,又可证四边形为平行四边形,故有EC=AB=25cm,再再根据DC=DE+EC进行解答即可5如图1,四边形ABCD是正方形,点E是边BC上一点,点F在射线CM上,AEF=90,AE=EF,过点F作射线BC的垂线,垂足为H,连接AC(1) 试判断BE与FH的数量关系,并说明理由;(2) 求证:ACF=9
7、0;(3) 连接AF,过A,E,F三点作圆,如图2. 若EC=4,CEF=15,求的长.图1 图2【答案】(1)BE=FH ;理由见解析(2)证明见解析(3)=2【解析】试题分析:(1)由ABEEHF(SAS)即可得到BE=FH(2)由(1)可知AB=EH,而BC=AB,FH=EB,从而可知FHC是等腰直角三角形,FCH为45,而ACB也为45,从而可证明(3)由已知可知EAC=30,AF是直径,设圆心为O,连接EO,过点E作ENAC于点N,则可得ECN为等腰直角三角形,从而可得EN的长,进而可得AE的长,得到半径,得到所对圆心角的度数,从而求得弧长试题解析:(1)BE=FH理由如下:四边形A
8、BCD是正方形 B=90,FHBC FHE=90又AEF=90 AEB+HEF=90 且BAE+AEB=90HEF=BAE AEB=EFH 又AE=EFABEEHF(SAS)BE=FH(2)ABEEHFBC=EH,BE=FH 又BE+EC=EC+CH BE=CH CH=FHFCH=45,FCM=45AC是正方形对角线, ACD=45ACF=FCM +ACD =90(3)AE=EF,AEF是等腰直角三角形AEF外接圆的圆心在斜边AF的中点上设该中点为O连结EO得AOE=90过E作ENAC于点NRtENC中,EC=4,ECA=45,EN=NC=RtENA中,EN =又EAF=45 CAF=CEF=
9、15(等弧对等角)EAC=30AE=RtAFE中,AE= EF,AF=8AE所在的圆O半径为4,其所对的圆心角为AOE=90=24(90360)=2考点:1、正方形;2、等腰直角三角形;3、圆周角定理;4、三角函数6在RtACB和AEF中,ACBAEF90,若点P是BF的中点,连接PC,PE.特殊发现:如图1,若点E、F分别落在边AB,AC上,则结论:PCPE成立(不要求证明)问题探究:把图1中的AEF绕点A顺时针旋转(1)如图2,若点E落在边CA的延长线上,则上述结论是否成立?若成立,请给予证明;若不成立,请说明理由;(2)如图3,若点F落在边AB上,则上述结论是否仍然成立?若成立,请给予证
10、明;若不成立,请说明理由;(3)记k,当k为何值时,CPE总是等边三角形?(请直接写出后的值,不必说)【答案】 成立 ,成立 当k为时,总是等边三角形【解析】【分析】(1)过点P作PMCE于点M,由EFAE,BCAC,得到EFMPCB,从而有,再根据点P是BF的中点,可得EM=MC,据此得到PC=PE(2)过点F作FDAC于点D,过点P作PMAC于点M,连接PD,先证DAFEAF,即可得出AD=AE;再证DAPEAP,即可得出PD=PE;最后根据FDAC,BCAC,PMAC,可得FDBCPM,再根据点P是BF的中点,推得PC=PD,再根据PD=PE,即可得到结论(3)因为CPE总是等边三角形,
11、可得CEP=60,CAB=60;由ACB=90,求出CBA=30;最后根据,=tan30,求出当CPE总是等边三角形时,k的值是多少即可【详解】解:(1)PC=PE成立,理由如下:如图2,过点P作PMCE于点M,EFAE,BCAC,EFMPCB,点P是BF的中点,EM=MC,又PMCE,PC=PE;(2)PC=PE成立,理由如下:如图3,过点F作FDAC于点D,过点P作PMAC于点M,连接PD,DAF=EAF,FDA=FEA=90,在DAF和EAF中,DAF=EAF,FDA=FEA,AF=AF,DAFEAF(AAS),AD=AE,在DAP和EAP中,AD=AE,DAP=EAP,AP=AP,DA
12、PEAP(SAS),PD=PE,FDAC,BCAC,PMAC,FDBCPM,点P是BF的中点,DM=MC,又PMAC,PC=PD,又PD=PE,PC=PE;(3)如图4,CPE总是等边三角形,CEP=60,CAB=60,ACB=90,CBA=90ACB=9060=30,=tan30,k=tan30=,当k为时,CPE总是等边三角形【点睛】考点:1几何变换综合题;2探究型;3压轴题;4三角形综合题;5全等三角形的判定与性质;6平行线分线段成比例7问题背景:如图(a),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B,连接A B与直线l交于
13、点C,则点C即为所求.(1)实践运用: 如图(b),已知,O的直径CD为4,点A 在O 上,ACD=30,B 为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为 (2)知识拓展:如图(c),在RtABC中,AB=10,BAC=45,BAC的平分线交BC于点D,E、F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程【答案】解:(1)(2)如图,在斜边AC上截取AB=AB,连接BBAD平分BAC,点B与点B关于直线AD对称过点B作BFAB,垂足为F,交AD于E,连接BE则线段BF的长即为所求 (点到直线的距离最短) 在RtAFB/中,BAC=450, AB/=AB=
14、10,BE+EF的最小值为【解析】试题分析:(1)找点A或点B关于CD的对称点,再连接其中一点的对称点和另一点,和MN的交点P就是所求作的位置,根据题意先求出CAE,再根据勾股定理求出AE,即可得出PA+PB的最小值:如图作点B关于CD的对称点E,连接AE交CD于点P,此时PA+PB最小,且等于A作直径AC,连接CE,根据垂径定理得弧BD=弧DEACD=30,AOD=60,DOE=30AOE=90CAE=45又AC为圆的直径,AEC=90C=CAE=45CE=AE=AC=AP+BP的最小值是(2)首先在斜边AC上截取AB=AB,连接BB,再过点B作BFAB,垂足为F,交AD于E,连接BE,则线
15、段BF的长即为所求8如图,抛物线C1:y=(x+m)2(m为常数,m0),平移抛物线y=x2,使其顶点D在抛物线C1位于y轴右侧的图象上,得到抛物线C2抛物线C2交x轴于A,B两点(点A在点B的左侧),交y轴于点C,设点D的横坐标为a(1)如图1,若m=当OC=2时,求抛物线C2的解析式;是否存在a,使得线段BC上有一点P,满足点B与点C到直线OP的距离之和最大且AP=BP?若存在,求出a的值;若不存在,请说明理由;(2)如图2,当OB=2m(0m)时,请直接写出到ABD的三边所在直线的距离相等的所有点的坐标(用含m的式子表示)【答案】(1) y=x2+x+2(2)P1(m,1),P2(m,3
16、),P3(m,3),P4(3m,3)【解析】试题分析:(1)首先写出平移后抛物线C2的解析式(含有未知数a),然后利用点C(0,2)在C2上,求出抛物线C2的解析式;认真审题,题中条件“AP=BP”意味着点P在对称轴上,“点B与点C到直线OP的距离之和最大”意味着OPBC画出图形,如图1所示,利用三角函数(或相似),求出a的值;(2)解题要点有3个:i)判定ABD为等边三角形;ii)理论依据是角平分线的性质,即角平分线上的点到角两边的距离相等;iii)满足条件的点有4个,即ABD形内1个(内心),形外3个不要漏解试题解析:(1)当m=时,抛物线C1:y=(x+)2抛物线C2的顶点D在抛物线C1
17、上,且横坐标为a,D(a,(a+)2)抛物线C2:y=(xa)2+(a+)2(I)OC=2,C(0,2)点C在抛物线C2上,(0a)2+(a+)2=2,解得:a=,代入(I)式,得抛物线C2的解析式为:y=x2+x+2在(I)式中,令y=0,即:(xa)2+(a+)2=0,解得x=2a+或x=,B(2a+,0);令x=0,得:y=a+,C(0,a+)设直线BC的解析式为y=kx+b,则有:,解得,直线BC的解析式为:y=x+(a+)假设存在满足条件的a值AP=BP,点P在AB的垂直平分线上,即点P在C2的对称轴上;点B与点C到直线OP的距离之和BC,只有OPBC时等号成立,OPBC如图1所示,
18、设C2对称轴x=a(a0)与BC交于点P,与x轴交于点E,则OPBC,OE=a点P在直线BC上,P(a,a+),PE=a+tanEOP=tanBCO=,解得:a=存在a=,使得线段BC上有一点P,满足点B与点C到直线OP的距离之和最大且AP=BP(3)抛物线C2的顶点D在抛物线C1上,且横坐标为a,D(a,(a+m)2)抛物线C2:y=(xa)2+(a+m)2令y=0,即(xa)2+(a+m)2=0,解得:x1=2a+m,x2=m,B(2a+m,0)OB=2m,2a+m=2m,a=mD(m,3)AB=OB+OA=2m+m=2如图2所示,设对称轴与x轴交于点E,则DE=3,BE=AB=,OE=O
19、BBE=mtanABD=,ABD=60又AD=BD,ABD为等边三角形作ABD的平分线,交DE于点P1,则P1E=BEtan30=1,P1(m,1);在ABD形外,依次作各个外角的平分线,它们相交于点P2、P3、P4在RtBEP2中,P2E=BEtan60=3,P2(m,3);易知ADP3、BDP4均为等边三角形,DP3=DP4=AB=2,且P3P4x轴P3(m,3)、P4(3m,3)综上所述,到ABD的三边所在直线的距离相等的所有点有4个,其坐标为:P1(m,1),P2(m,3),P3(m,3),P4(3m,3)【考点】二次函数综合题9许昌芙蓉湖位于许昌市水系建设总体规划中部,上游接纳清泥河
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初三 数学 锐角三角 函数 专项 练习题 答案
链接地址:https://www.31ppt.com/p-4817423.html