半参数核估计理论及应用毕业6206388.doc
《半参数核估计理论及应用毕业6206388.doc》由会员分享,可在线阅读,更多相关《半参数核估计理论及应用毕业6206388.doc(36页珍藏版)》请在三一办公上搜索。
1、 本科毕业论文(设计)题目: 半参数核估计理论及应用 摘 要 现代科学技术的飞速发展,为测绘科学提供了一个良好的发展机遇,同时也对测绘科学提出了更高的要求。首先由于现代测量仪器发展和观测数据的复杂性,测绘学界对测量数据处理的精度要求越来越高,但是整个测量平差系统是由众多因素共同确定的,其中一些影响因素与观测值函数关系并不明确,得到的一些复杂的观测数据导致经典最小二乘准则失效,最终导致没有明确了解的观测值部分系统误差影响无法消除等。半参数模型包含一个参数分量和一个非参数分量,对于与观测值函数关系已知部分的参数采取与最小二乘估计类似的方法,即将这部分参数完全参数化;对于函数关系未知或难以用函数关系
2、表达的因素不采用任何具体函数表达,而是采用抽象的函数给与表达,即事先不规定具体函数形式,其函数关系形式可以任意的,具体应用时,根据实际情况不同构造不同函数,其可以克服参数和非参数模型表达不完善的部分,弥补了参数模型和非参数模型的不足,能够解决许多的实际问题,具有更强的模型解释能力和适应能力。大量的研究表明半参数模型在处理观测量与待估参数之间的复杂关系时有很明显的优点,因此在很多领域得到了研究与应用。半参数模型估计能够很好的处理系统误差和粗差,并且能分离出系统误差和粗差,提供更加可靠的解算成果。半参数核估计包括偏核光滑估计、偏残差估计、近邻核估计、最小二乘核估计以及N-W核估计等。本文主要研究半
3、参数的最小二乘核估计和偏核光滑估计,通过解算其参数分量和非参数分量及推导其期望、偏差、方差及均方误差等统计性质,研究窗宽参数的选取,并通过模拟算例证明和对比最小二乘核估计和偏核光滑估计各自在参数和非参数分量估计以及估计系统误差等方面的有效性和可行性,并将半参数核估计应用到平面坐标转换中。本论文共分为五章,第一章绪论主要阐述了半参数模型在统计领域的研究现状及半参数回归模型在测量数据处理应用的两种主要方法:补偿最小二乘法和基于外延预测预测的核估计;着重介绍了半参数核估计理论方面的国内国外研究现以及本文研究的内容。半参数核估计包括偏核光滑估计、偏残差估计、近邻核估计、最小二乘核估计以及N-W核估计等
4、,本文主要研究半参数最小二乘法和偏核光滑估计法。第二章主要研究半参数核估计的理论,包括核权函数和核函数的选取问题;介绍了核估计的两种方法,即最小二乘核估计和偏核光滑估计,分析了这两种方法的各自特点,并解算了其参数和非参数分量;同时讨论了窗宽参数在核估计中的重要作用,在小样本估计中,样本的大小,核函数的选取以及窗宽参数共同决定了核估计性能的好坏。第三章主要是推导了半参数核估计量(即参数分量和非参数分量)的统计性质,其估计性质包括期望、方差、偏差、均方误差。同时也讨论了窗宽参数的选取问题,窗宽参数是一个非常重要的光滑参数,它对曲线的拟合程度和光滑程度起平衡作用,实际上是起到一个平滑因子的角色,它的
5、选择好坏对估计量的性质影响很大。窗宽越小,则核估计的偏差越小,但估计的方差却越大。在窗宽参数的选取中,讨论了最小均方误差法和经典的CV和GCV法等等。窗宽的变化,不可能使核估计的偏差和方差同时变小。因此,最佳窗宽选择的标准必须在核估计的偏差和方差之间进行权衡。第四章对测量误差进行了概述,介绍了系统误差相关特性。通过模拟算例证明半参数核估计在估计参数分量,剔除粗差和分离系统误差方面的可行性,通过半参数核估计可明显提高估计效果。将半参数核估计理论应用到平面坐标转换,此前,并未有过用核估计进行坐标转换,本章通过实际算例证明了核估计在高低精度坐标系转换之间可以消除系统误差,取得较高精度。关键词:半参数
6、模型,核估计,统计性质,系统误差,坐标转换AbstractThe rapid development of modern science and technology not only provides a good opportunity for the development of surveying and mapping science, but also a higher requirement on Surveying and Mapping .First, as the development of modern measuring instruments and the com
7、plexity of observational data ,the precision of the measurement data processing becomes increasingly demanding, but the entire survey adjustment system is determined by numerous factors, some of which affect the observation function not clearly.The complex observational data lead classical least squ
8、ares criterion to failure, resulting in some systematic error can not be eliminated and so on. Semi-parametric model contains a parameter component and a non-parametric component, for a function with the observed values of the parameters of the known part of the pre-squares estimation taken a simila
9、r approach, some parameters about which fully parameterized; For the function is unknown or difficult to use the function relationship factor expression expression does not use any specific function, instead of using abstract functions give expression, that does not require prior specific functional
10、 form, which can be any function of the form, the specific application, different configurations according to the actual situation of different functions, and its can overcome the parametric and non-parametric models expressing the imperfect parts, make up the parameters of the model and the lack of
11、 non-parametric model that can solve many practical problems, with more models to explain and adaptability. Numerous studies indicate that semi-parametric model in dealing with the concept of measurement parameters to be estimated when the complex relationship between the obvious advantages, so in m
12、any fields research and application. Semi-parametric estimation model can well handle system errors and outliers, and can be isolated from system errors and gross errors, provide more reliable solver results.Semi-parametric kernel estimation including migraine kernel smooth estimation, partial resid
13、uals estimated neighbor kernel estimation, least squares estimation and NW kernel kernel estimation. This paper studies the migraine kernel smooth estimation and least squares estimation, solves parametric component and non-parametric components, derives their expectations, deviation, variance and m
14、ean square error,discuss the problem of window width parameter selection , find the model scope;and through simulations and comparative examples demonstrate that kernel smooth estimation and least squares estimation is effective and feasible in parametric and non-parametric estimation,namely we can
15、estimate the system error. The thesis is divided into five chapters, first chapter mainly describes the research of semi-parametric models in the field of statistics and two methods that semi-parametric regression model applies in the measurement data processing: Compensation based on least squares
16、method and the epitaxial Forecast Forecast kernel estimation; highlights the semi-parametric estimation theoretical aspects of kernel research at home and abroad ,and the contents of this paper are: semi-parametric kernel estimation including migraine kernel smooth estimation, partial residuals esti
17、mated neighbor kernel estimation, least squares estimation and NW kernel estimation, this paper mainly studies migraine kernel smooth estimation and least squares estimation. The second chapter studies the theory of semi-parametric kernel estimation.including kernel weight functions and kernel funct
18、ion selection problem.introduces two kernel estimation method, namely migraine kernel smooth estimation and least squares estimation,analysis of the characteristics of each of these two methods,and extract forget their parametric and nonparametric component.in a small sample estimates, the sample si
19、ze, the selection of kernel function and window width parameters together determine the kernel estimation performance quality.Finally, numerical examples demonstrates that the component parameters of two methods is correct and we compare the result. The third chapter is to derive a semi-parametric k
20、ernel estimation (parametric and non-parametric component component) of the statistical properties, according to which We can infer the scope of application of the model.The properties includes its estimated expectation, variance, bias, mean square error. It also discusses the problem of the window
21、width parameter selection, window width is an important parameter smoothing parameter, It Plays a balancing role on the degree of curve fitting and smoothness,in fact, it is to play a role as a smoothing factor,that it is good or not influences the properties of the estimation,.The smaller Window wi
22、dth is, the smaller the kernel estimation bias is, but the greater estimates of the variance is. In the window width parameter selection, we discuss minimum mean square error method and classic GCV method and so on.When window width changes, it is impossible to make kernel estimation bias and varian
23、ce simultaneously smaller. Therefore, the optimal window width selection criteria must be balanced in the kernel trade-off between bias and variance. This chapter provides an overview of the measurement error and introduces the related characteristics of systematic errors . Through simulation exampl
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 参数 估计 理论 应用 毕业 6206388
链接地址:https://www.31ppt.com/p-4816493.html