二次函数知识点总结及典型题目.doc
《二次函数知识点总结及典型题目.doc》由会员分享,可在线阅读,更多相关《二次函数知识点总结及典型题目.doc(20页珍藏版)》请在三一办公上搜索。
1、二次函数知识点总结及典型题目一.定义:一般地,如果是常数,那么叫做的二次函数. 二次函数的图象是抛物线,所以也叫抛物线y=ax2+bx+c;抛物线关于对称轴对称且以对称轴为界,一半图象上坡,另一半图象下坡;其中c叫二次函数在y轴上的截距, 即二次函数图象必过(0,c)点.二.二次函数的性质(1)抛物线的顶点是坐标原点,对称轴是轴.(2)函数的图像与的符号关系. 当时抛物线开口向上顶点为其最低点;当时抛物线开口向下顶点为其最高点.(3)顶点是坐标原点,对称轴是轴的抛物线的解析式形式为. y=ax2 (a0)可以经过补0看做二次函数的一般式,顶点式和双根式,即: y=ax2+0x+0, y=a(x
2、-0)2+0, y=a(x-0)(x-0).例题精析:1 二次函数的概念,二次函数yax2 (a0)的图象性质二次函数的一般式为yax2bxc(a0)。强调a0而常数b、c可以为0,当b,c同时为0时,抛物线为yax2(a0)。此时,抛物线顶点为(0,0),对称轴是y轴,即直线x0。例:已知函数是关于x的二次函数,求:(1)满足条件的m值;(2)m为何值时,抛物线有最低点?求出这个最低点这时当x为何值时,y随x的增大而增大?(3)m为何值时,函数有最大值?最大值是什么?这时当x为何值时,y随x的增大而减小? 解: (1)使是关于x的二次函数,则m2m42,且m20,即:m2m42,m20,解得
3、;m2或m3,m2 (2)抛物线有最低点的条件是它开口向上,即m20, (3)函数有最大值的条件是抛物线开口向下,即m20。练习:已知函数是二次函数,其图象开口方向向下,则m_,顶点为_,当x_0时,y随x的增大而增大,当x_0时,y随x的增大而减小。2、用配方法求抛物线的顶点,对称轴;抛物线的画法,平移规律抛物线的一般式与顶点式的互化关系: yax2bxcya(x)2平移规律如下图:练习: (1)抛物线yx2bxc的图象向左平移2个单位。再向上平移3个单位,得抛物线yx22x1,求:b与c的值。(2)通过配方,求抛物线yx24x5的开口方向、对称轴及顶点坐标,再画出图象。 3知识点串联,综合
4、应用。 例:如图,已知直线AB经过x轴上的点A(2,0),且与抛物线yax2相交于B、C两点,已知B点坐标为(1,1)。 (1)求直线和抛物线的解析式;(2)如果D为抛物线上一点,使得AOD与OBC的面积相等,求D点坐标。 点评:(1)直线AB过点A(2,0),B(1,1),代入解析式ykxb,可确定k、b,抛物线yax2过点B(1,1),代人可确定a。求得:直线解析式为yx2,抛物线解析式为yx2。 (2)由yx2与yx2,先求抛物线与直线的另一个交点C的坐标为(2,4),SOBCSABCSOAB3。 SAODSOBC,且OA2 D的纵坐标为3又 D在抛物线yx2上,x23,即x D(,3)
5、或(,3) 练习:函数yax2(a0)与直线y2x3交于点A(1,b),求:(1)a和b的值;(2)求抛物线yax2的顶点和对称轴; (3)x取何值时,二次函数yax2中的y随x的增大而增大,(4)求抛物线与直线y2两交点及抛物线的顶点所构成的三角形面积。课堂作业 一、填空。 1若二次函数y(m1)x2m22m3的图象经过原点,则m_。 2函数y3x2与直线ykx3的交点为(2,b),则k_,b_。 3抛物线y(x1)22可以由抛物线yx2向_方向平移_个单位,再向_方向平移_个单位得到。 4用配方法把yx2x化为ya(xh)2k的形式为y_,其开口方向_,对称轴为_,顶点坐标为_。 二、选择
6、。 1函数y(mn)x2mxn是二次函数的条件是( ) Am、n是常数,且m0Bm、n是常数,且mn C. m、n是常数,且n0D. m、n可以为任意实数 2直线ymx1与抛物线y2x28xk8相交于点(3,4),则m、k值为( )A BC. D. 3下列图象中,当ab0时,函数yax2与yaxb的图象是( ) 三、解答题 1函数 (1)当a取什么值时,它为二次函数。 (2)当a取什么值时,它为一次函数。 3.二次函数 的图像是对称轴平行于(包括重合)轴的抛物线.4.二次函数用配方法可化成:的形式,其中.5.二次函数由特殊到一般,可分为以下几种形式:;.6.抛物线的三要素:开口方向、对称轴、顶
7、点. 的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同. 平行于轴(或重合)的直线记作.特别地,轴记作直线.7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.8.求抛物线的顶点、对称轴的方法 (1)公式法:,顶点是,对称轴是直线. (2)配方法:运用配方的方法,将抛物线的解析式化为的形式,得到顶点为(,),对称轴是直线. (3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点. 用配方法求得的顶
8、点,再用公式法或对称性进行验证,才能做到万无一失.9.抛物线中,的作用 (1)决定开口方向及开口大小,这与中的完全一样. (2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线,故:时,对称轴为轴;(即、同号)时,对称轴在轴左侧;(即、异号)时,对称轴在轴右侧. (3)的大小决定抛物线与轴交点的位置. 当时,抛物线与轴有且只有一个交点(0,): ,抛物线经过原点; ,与轴交于正半轴;,与轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则 .10.几种特殊的二次函数的图像特征如下:函数解析式开口方向对称轴顶点坐标当时开口向上当时开口向下(轴)(0,0)(轴
9、)(0, )(,0)(,)()二次函数y=ax2+bx+c (a0)的图象及几个重要点的公式: 二次函数y=ax2+bx+c (a0)中,a、b、c与的符号与图象的关系:(1) a0 抛物线开口向上; a0 抛物线开口向下;(2) c0 抛物线从原点上方通过; c=0 抛物线从原点通过;c0 抛物线从原点下方通过;(3) a, b异号 对称轴在y轴的右侧; a, b同号 对称轴在y轴的左侧;b=0 对称轴是y轴;(4) 0 抛物线与x轴有两个交点; =0 抛物线与x轴有一个交点(即相切);0 抛物线与x轴无交点.11.用待定系数法求二次函数的解析式 (1)一般式:.已知图像上三点或三对、的值,
10、通常选择一般式. (2)顶点式:.已知图像的顶点或对称轴,通常选择顶点式. (3)交点式:已知图像与轴的交点坐标、,通常选用交点式:.12.直线与抛物线的交点 (1)轴与抛物线得交点为(0, ). (2)与轴平行的直线与抛物线有且只有一个交点(,). (3)抛物线与轴的交点 二次函数的图像与轴的两个交点的横坐标、,是对应一元二次方程的两个实数根.抛物线与轴的交点情况可以由对应的一元二次方程的根的判别式判定: 有两个交点抛物线与轴相交; 有一个交点(顶点在轴上)抛物线与轴相切; 没有交点抛物线与轴相离. (4)平行于轴的直线与抛物线的交点 同(3)一样可能有0个交点、1个交点、2个交点.当有2个
11、交点时,两交点的纵坐标相等,设纵坐标为,则横坐标是的两个实数根. (5)一次函数的图像与二次函数的图像的交点,由方程组 的解的数目来确定:方程组有两组不同的解时与有两个交点; 方程组只有一组解时与只有一个交点;方程组无解时与没有交点. (6)抛物线与轴两交点之间的距离:若抛物线与轴两交点为,由于、是方程的两个根,故例题精析 1、用待定系数法确定二次函数解析式 例:根据下列条件,求出二次函数的解析式。 (1)抛物线yax2bxc经过点(0,1),(1,3),(1,1)三点。 (2)抛物线顶点P(1,8),且过点A(0,6)。 (3)已知二次函数yax2bxc的图象过(3,0),(2,3)两点,并
12、且以x1为对称轴。(4)已知二次函数yax2bxc的图象经过一次函数y3/2x3的图象与x轴、y轴的交点;且过(1,1),求这个二次函数解析式,并把它化为ya(xh)2k的形式。提示:二次函数解析式常用的有三种形式: (1)一般式:yax2bxc (a0)(2)顶点式:ya(xh)2k (a0) (3)两根式:ya(xx1)(xx2) (a0) 当已知抛物线上任意三点时,通常设为一般式yax2bxc形式。 当已知抛物线的顶点与抛物线上另一点时,通常设为顶点式ya(xh)2k形式。当已知抛物线与x轴的交点或交点横坐标时,通常设为两根式ya(xx1)(xx2)2、知识点串联,综合应用 例:如图,抛
13、物线yax2bxc过点A(1,0),且经过直线yx3与坐标轴的两个交点B、C。 (1)求抛物线的解析式; (2)求抛物线的顶点坐标,(3)若点M在第四象限内的抛物线上,且OMBC,垂足为D,求点M的坐标。 提示: (1)求抛物线解析式,只要求出A、B,C三点坐标即可,设yx22x3。 (2)抛物线的顶点可用配方法求出,顶点为(1,4)。 (3)由|0B|OC|3 又OMBC。 所以,OM平分BOC 设M(x,x)代入yx22x3 解得x 因为M在第四象限:M(, ) (此题为二次函数与一次函数的交叉问题,涉及到了用待定系数法求函数解析式,用配方法求抛物线的顶点坐标;等腰三角形三线合一等性质应用
14、,求M点坐标时应考虑M点所在象限的符号特征,抓住点M在抛物线上,从而可求M的求标。) 练习;已知二次函数y2x2(m1)xm1。 (1)求证不论m为何值,函数图象与x轴总有交点,并指出m为何值时,只有一个交点。 (2)当m为何值时,函数图象过原点,并指出此时函数图象与x轴的另一个交点。(3)若函数图象的顶点在第四象限,求m的取值范围。课堂作业 一、填空。 1. 如果一条抛物线的形状与yx22的形状相同,且顶点坐标是(4,2),则它的解析式是_。 2开口向上的抛物线ya(x2)(x8)与x轴交于A、B两点,与y轴交于C点,若ACB90,则a_。 3已知抛物线yax2bxc的对称轴为x2,且过(3
15、,0),则abc_。 二、选择。 1如图(1),二次函数yax2bxc图象如图所示,则下列结论成立的是( ) Aa0,bc0 B. a0,bc0 C. aO,bcO D. a0,bc0 2已知二次函数yax2bxc图象如图(2)所示,那么函数解析式为( )Ayx22x3 B. yx22x3 Cyx22x3 D. yx22x3 3若二次函数yax2c,当x取x1、x2(x1x2)时,函数值相等,则当x取x1x2时,函数值为( ) Aac B. ac Cc D. c 4已知二次函数yax2bxc图象如图(3)所示,下列结论中: abc0,b2a;abc0,abc0,正确的个数是( ) A4个 B3
16、个 C. 2个 D1个 三、解答题。 已知抛物线yx2(2m1)xm2m2。 (1)证明抛物线与x轴有两个不相同的交点, (2)分别求出抛物线与x轴交点A、B的横坐标xA、xB,以及与y轴的交点的纵坐标yc(用含m的代数式表示) (3)设ABC的面积为6,且A、B两点在y轴的同侧,求抛物线的解析式。3二次函数实际应用 (1)何时获得最大利润问题。 例1:重庆市某区地理环境偏僻,严重制约经济发展,丰富的花木产品只能在本地销 售,区政府对该花木产品每投资x万元,所获利润为P= (x30)210万元,为了响应我国西部大开发的宏伟决策,区政府在制定经济发展的10年规划时,拟开发此花木产品,而开发前后可
17、用于该项目投资的专项资金每年最多50万元,若开发该产品,在前5年中,必须每年从专项资金中拿出25万元投资修通一条公路,且5年修通,公路修通后,花木产品除在本地销售外,还可运往外地销售,运往外地销售的花木产品,每投资x万元可获利润Q=(50x)2 (50x)308万元。 (1)若不进行开发,求10年所获利润最大值是多少? (2)若按此规划开发,求10年所获利润的最大值是多少?(3)根据(1)、(2)计算的结果,请你用一句话谈谈你的想法。 提示: (1) 若不开发此产品,按原来的投资方式,由P= (x30)210知道,只需从50万元专款中拿出30万元投资,每年即可获最大利润10万元,则10年的最大
18、利润为M11010=100万元。 (2) 若对该产品开发,在前5年中,当x=25时,每年最大利润是:P (2530)210=9.5(万元) 则前5年的最大利润为M2=9.55=47.5万元 设后5年中x万元就是用于本地销售的投资。 则由Q (50x)(50x)308知,将余下的(50x万元全部用于外地销售的投资才有可能获得最大利润; 则后5年的利润是: M3(x30)2105(x2x308)55(x20)23500 故当x20时,M3取得最大值为3500万元。 10年的最大利润为MM2M33547.5万元(3) 因为3547.5100,所以该项目有极大的开发价值。 例2:某公司试销一种成本单价
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 函数 知识点 总结 典型 题目
链接地址:https://www.31ppt.com/p-4768694.html