一_二维形式的柯西不等式.ppt
《一_二维形式的柯西不等式.ppt》由会员分享,可在线阅读,更多相关《一_二维形式的柯西不等式.ppt(38页珍藏版)》请在三一办公上搜索。
1、3.1二维形式的柯西不等式,新课导入,类比不等式a2+b22ab的推导过程,通过乘法及配方,研究关于它的不等关系.,分析,把该式首先展开,再用配方法,问题就可以解决。,解:,展开乘积得(a2+b2)(c2+d2)=a2c2+b2d2+a2d2+b2c2,由于a2c2+b2d2+a2d2+b2c2=(ac+bd)2+(ad-bc)2,即(a2+b2)(c2+d2)=(ac+bd)2+(ad-bc)2,而(ad-bc)20,因此(a2+b2)(c2+d2)(ac+bd)2,提示,上式(1)是本节课所要研究的柯西不等式.,结论,定理1(二维形式的柯西不等式),若a,b,c,d都是实数,则(a2+b2
2、)(c2+d2)(ac+bd)2,当且仅当ad=bc时,等号成立.,分析,你能否证明,结论,讨论,对一个代数结果进行最简单的诠释,往往要借助直观的几何背景。讨论柯西不等式的几何意义。,设在平面直角坐标系xoy中有向量=(a,b),=(c,d),与之间的夹角为,0(如图),根据向量数量积的定义,有.=cos,用平面向量的坐标表示不等式(2)得:,所以.=cos,因为cos1,所以.,结论,定理2(柯西不等式的向量形式),设,是两个向量,则.,当且仅当是零向量或存在实数k,使=k时,等号成立.,试从不等式(1)推导不等式(2),再进行反方向的推导,从数形结合的角度体会两者的等价关系。,观察,如图,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二维 形式 不等式
链接地址:https://www.31ppt.com/p-4763735.html