(课件)332函数的极值与导数.ppt
《(课件)332函数的极值与导数.ppt》由会员分享,可在线阅读,更多相关《(课件)332函数的极值与导数.ppt(14页珍藏版)》请在三一办公上搜索。
1、3.3.2函数的极值与导数,f(x)0,f(x)0,复习:函数单调性与导数关系,如果在某个区间内恒有,则 为常数.,设函数y=f(x)在 某个区间 内可导,,f(x)增函数,f(x)减函数,在x1、x3处函数值f(x1)、f(x3)与x1、x3左右近旁各点处的函数值相比,有什么特点?f(x2)、f(x4)比x2、x4左右近旁各点处的函数值相比呢?,观察图像:,一、函数的极值定义,设函数f(x)在点x0附近有定义,,如果对X0附近的所有点,都有f(x)f(x0),则f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0);,如果对X0附近的所有点,都有f(x)f(x0),则f(x0)是函数
2、f(x)的一个极小值,记作y极小值=f(x0);,函数的极大值与极小值统称为极值.(极值即峰谷处的值),使函数取得极值的点x0称为极值点,探究:极值点处导数值(即切线斜率)有何特点?,结论:极值点处,如果有切线,切线水平的.即:f(x)=0,f(x1)=0,f(x2)=0,f(x3)=0,思考;若 f(x0)=0,则x0是否为极值点?,进一步探究:极值点两侧函数图像单调性有何特点?,极大值,极小值,即:极值点两侧单调性互异,f(x)0,x1,极大值点两侧,极小值点两侧,f(x)0,f(x)0,f(x)0,探究:极值点两侧导数正负符号有何规律?,x2,f(x)0,f(x)=0,f(x)0,极大值
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 课件 332 函数 极值 导数
链接地址:https://www.31ppt.com/p-4757972.html