《第十章时间序列分析.ppt》由会员分享,可在线阅读,更多相关《第十章时间序列分析.ppt(101页珍藏版)》请在三一办公上搜索。
1、第十章 时间序列分析,第一节 时间序列的意义和种类,第二节 动态水平指标,第三节 动态速度指标,【学习目标】通过本章学习,重点掌握时间序列的含义、编制原则、时期序列和时点序列的特点及时间序列的水平指标和速度指标的计算与运用;在此基础上熟悉时间序列的构成因素及分析模型,熟悉趋势变动及季节变动的测定。重点与难点:相对数时间序列序时平均数的计算;平均发展速度的计算;长期趋势、季节变动和循环变动的测定。,第四节 时间序列的分解分析,第一节 时间序列的意义和种类,(一)涵义,一、时间序列的意义,第十章 时间序列分析,时间序列是指将某种现象某一个统计指标在不同时间上的各个数值,按时间先后顺序排列而形成的序
2、列。,(二)时间序列的构成要素:,第十章 时间序列分析,第一节 时间序列的意义和种类,要素一:时间t,要素二:指标数值a,第十章 时间序列分析,第一节 时间序列的意义和种类,(三)研究时间序列的主要作用有,1.可以反映社会经济现象的发展变化过程,描述现象的发展状态和结果。2.可以研究社会经济现象的发展趋势和发展速度。3.可以探索现象发展变化的规律,对某些社会经济现象进行预测。4.利用时间序列可以在不同地区或国家之间进行对比分析,这也是统计分析的重要方法之一。,第十章 时间序列分析,第一节 时间序列的意义和种类,二 时间序列的种类,(一)绝对数时间序列,1.时期序列,由时期总量指标排列而成的时间
3、序列。,时期序列的主要特点有:1)序列中的指标数值具有可加性。2)序列中每个指标数值的大小与其所反映的时期长短有直接联系。3)序列中每个指标数值通常是通过连续不断登记汇总取得的。,第十章 时间序列分析,第一节 时间序列的意义和种类,二 时间序列的种类,(一)绝对数时间序列,2.时点序列,由时点总量指标排列而成的时间序列,时点序列的主要特点有:1)序列中的指标数值不具可加性。2)序列中每个指标数值的大小与其间隔时间的长短没有直接联系。3)序列中每个指标数值通常是通过定期的一次登记取得的。,第十章 时间序列分析,第一节 时间序列的意义和种类,二 时间序列的种类,(二)相对数时间序列,把一系列同种相
4、对数指标按时间先后顺序排列而成的时间序列叫做相对数时间序列。,(三)平均数时间序列,平均数时间序列是指由一系列同类平均指标按时间先后顺序排列的时间序列。,第十章 时间序列分析,第一节 时间序列的意义和种类,三 编制时间序列的原则,保证序列中各期指标数值的可比性。,(一)时期长短一致,(二)总体范围一致,(三)指标的经济内容统一,(四)计算方法统一,(五)计算价格和计量单位一致,第十章 时间序列分析,第一节 时间序列的意义和种类,四 时间序列常用的分析方法,(一)指标分析法,通过时间序列的分析指标来揭示现象的发展变化状况和发展变化程度,(二)构成因素分析法,通过对影响时间序列的构成因素进行分解分
5、析,揭示现象随时间变化而演变的规律,第十章 时间序列分析,第二节 动态水平指标,一 发展水平和平均发展水平,(一)发展水平,发展水平是指时间序列中的各个指标数值。反映社会经济现象在一定时期或时点上达到的规模或水平。,设时间数列中各期发展水平为:,或:,第十章 时间序列分析,(二)平均发展水平,1 定义:平均发展水平是根据时间序列中各个指标数值求得的平均,也叫做“序时平均数”或“动态平均数”,它从动态上说明社会经济现象在某一段时间内发展的一般水平。,2 一般平均数与序时平均数的区别:,(1)计算的依据不同:前者是根据变量数列计算的,后者则是根据时间数列计算的;(2)说明的内容不同:前者表明总体内
6、部各单位的一般水平,后者则表明整个总体在不同时期内的一般水平。,第二节 动态水平指标,第十章 时间序列分析,3 序时平均数的计算,1)根据绝对数时间序列计算序时平均数,(1)由时期数列计算,采用简单算术平均法,第二节 动态水平指标,第十章 时间序列分析,式中:,序时平均数;,各期发展水平;,时期项数。,第二节 动态水平指标,第十章 时间序列分析,第二节 动态水平指标,第十章 时间序列分析,由时点数列计算,由连续时点数列计算,对于逐日记录的时点数列可视其为连续,间隔相等时,采用简单算术平均法,第二节 动态水平指标,第十章 时间序列分析,例:某企业某月上旬实有职工人数如表,计算该月每日平均职工人数
7、:,由连续时点数列计算,间隔相等时,采用简单算术平均法,第二节 动态水平指标,第十章 时间序列分析,由连续时点数列计算,间隔不相等时,采用加权算术平均法,对于逐日记录的时点数列,每变动一次才登记一次,第二节 动态水平指标,第十章 时间序列分析,例:某企业八月份工人人数变动资料如下表所示,计算八月份平均每日工人数,第二节 动态水平指标,第十章 时间序列分析,由间断时点数列计算,第二节 动态水平指标,每隔一段时间登记一次,表现为期初或期末值,间隔相等 时,采用简单序时平均法,第十章 时间序列分析,第二节 动态水平指标,例:某百货商店某年9-12月各月末的商品库存额如下表,试计算第四季度平均库存额。
8、,第十章 时间序列分析,第二节 动态水平指标,第十章 时间序列分析,间隔不相等 时,采用加权序时平均法,第十章 时间序列分析,例:某仓库某年的库存量资料如下表所示,试计算全年的月平均库存量,全年的月平均库存量,第二节 动态水平指标,第十章 时间序列分析,第二节 动态水平指标,2)由相对数时间数列计算序时平均数,(1)a、b均为时期数列时,基本公式,第十章 时间序列分析,第二节 动态水平指标,例:某商店第二季度计划完成情况,试求第二季度平均计划完成程度,第十章 时间序列分析,第二节 动态水平指标,或,或,第十章 时间序列分析,第二节 动态水平指标,a、b均为时点数列时,例:某工业企业第二季度生产
9、工人比重如下表所示。,第十章 时间序列分析,第二节 动态水平指标,计算第二季度生产工人占全部职工平均比重:,第十章 时间序列分析,第二节 动态水平指标,a为时期数列、b为时点数列时,第十章 时间序列分析,【例】已知某企业的下列资料:,第二节 动态水平指标,要求计算:该企业第二季度各月的劳动生产率;该企业第二季度的月平均劳动生产率;该企业第二季度的劳动生产率。,第十章 时间序列分析,解:第二季度各月的劳动生产率:,四月份:,第二节 动态水平指标,五月份:,六月份:,第十章 时间序列分析,第二节 动态水平指标,该企业第二季度的月平均劳动生产率:,该企业第二季度的劳动生产率:,第十章 时间序列分析,
10、3)由平均数时间序列计算序时平均数,第二节 动态水平指标,(1)由一般平均数构成的时间序列求序时平均数。,一般平均数时间序列的分子数列是标志总量,属时期数列,其分母数列是总体问题,属时点数列。因此其计算方法同相对数时间数列计算序时平均数第三类相同。,在时期相等的情况下,可直接根据各序时平均数采用简单算术平均方法来计算平均数。在时期不等情况下,则要以时期为权数,采用加权算术平均数方法来计算。,(2)由序时平均数时间序列计算序时平均数。,第十章 时间序列分析,第二节 动态水平指标,二、增长量和平均增长量,(一)增长量,指现象在一定时期内增长的绝对数量。它等于报告期水平与基期水平之差。,增长量报告期
11、水平基期水平,第十章 时间序列分析,第二节 动态水平指标,二者的关系:,第十章 时间序列分析,第二节 动态水平指标,第十章 时间序列分析,第二节 动态水平指标,第十章 时间序列分析,第三节 动态速度指标,一、发展速度和增长速度,(一)发展速度,发展速度是指报告期水平与基期水平对比所得的反映社会现象发展程度的相对数,说明报告期水平已发展到(或增加到)基期水平的若干倍(或百分之几)。,第十章 时间序列分析,第三节 动态速度指标,1.定基发展速度,2.环比发展速度,由于采用的基期不同,发展速度又可分为定基发展速度和环比发展速度。,第十章 时间序列分析,第三节 动态速度指标,某地区2000-2005年
12、社会消费品零售总额情况,返回49页,第十章 时间序列分析,第三节 动态速度指标,环比发展速度与定基发展速度的关系:,(1)定基发展速度等于相应各环比发展速度的连乘积:,(2)两个相邻的定基发展速度之比等于相应的环比发展速度,第十章 时间序列分析,第三节 动态速度指标,3.年距发展速度,为了避免季节变动的影响,实际工作中还可以计算年距发展速度。用以说明现象本期发展水平与上年同期发展水平对比达到的相对发展程度。,第十章 时间序列分析,第三节 动态速度指标,(二)增长速度,增长速度是表明社会经济现象增长程度的相对数,它是报告期的增长量与基期水平对比的结果,说明报告期水平比基期水平增加了百分之几(或多
13、少倍)。,计算公式:,第十章 时间序列分析,第三节 动态速度指标,发展速度与增长速度性质不同。前者是动态相对数,后者是强度相对数;定基增长速度与环比增长速度之间没有直接的换算关系。,发展速度与增长速度的关系,第十章 时间序列分析,第三节 动态速度指标,第十章 时间序列分析,第三节 动态速度指标,(三)发展速度与增长速度的应用,在应用速度分析实际问题时,应注意以下几方面的问题:,1.当时间序列中的观察值出现0或负数时,不宜计算速度。,2.在有些情况下,不能单纯就速度论速度,要注意速度 与基期绝对水平的结合分析。即计算增长1%的绝对值。,第十章 时间序列分析,第三节 动态速度指标,二、平均发展速度
14、与平均增长速度,(一)平均发展速度,各环比发展速度的平均数,说明现象每期变动的平均程度,(二)平均增长速度,说明现象逐期增长的平均程度,第十章 时间序列分析,第三节 动态速度指标,(三)平均发展速度的计算,1.水平法(几何平均法),基本思想:从最初水平 出发,以平均发展速度代替各个环比发展速度,在n期后,正好达到最末水平。,第十章 时间序列分析,第三节 动态速度指标,即有:,计算公式:,第十章 时间序列分析,第三节 动态速度指标,例:计算我国某地区2000-2005年社会消费品零售总额的年平均发展速度。(资料见本章39页),解:平均发展速度为:,平均增长速度为:,第十章 时间序列分析,第三节
15、动态速度指标,2.累计法(方程法),基本思想:从最初水平出发,每期按固定的平均发展速度发展,各期推算水平的总和等于各期实际水平的总和。,各期推算水平:,第十章 时间序列分析,第三节 动态速度指标,解这个高次方程,求出的正根,就是方程法所求的平均发展速度。,第十章 时间序列分析,第三节 动态速度指标,【例】某公司2005年实现利润15万元,计划今后三年共实现利润60万元,求该公司利润应按多大速度增长才能达到目的。,解:,第十章 时间序列分析,第三节 动态速度指标,第十章 时间序列分析,第三节 动态速度指标,3.水平法和累计法的应用,水平法:,累计法:,几何平均法研究的侧重点是最末水平;方程法研究
16、的侧重点是各年发展水平的累计总和。,第十章 时间序列分析,第四节 时间序列的分解分析,一、时间序列的构成因素和分析模型,(一)时间数列的构成因素,第十章 时间序列分析,第四节 时间序列的分解分析,(二)时间数列的组合模型,1 加法模型:Y=T+S+C+I,2 乘法模型:Y=TSCI,第十章 时间序列分析,第四节 时间序列的分解分析,二、长期趋势测定的意义,(一)正确反映现象发展变化的方向和趋势,把握现象随时间演变的趋势和规律;,(三)消除长期趋势的影响,便于更好地分解研究其他因素。,(二)利用现象发展的长期趋势,对事物的未来发展趋势作出预测;,第十章 时间序列分析,第四节 时间序列的分解分析,
17、三、测定长期趋势的方法,(一)时距扩大法,1、定义:时距扩大法是把原数列中较小时距单位的几项数据合并,扩大为较大时距单位的数据,从而对原数列进行修匀构成新的时间序列的一种方法。,2、作用:消除较小时距单位内偶然因素的影响,显示现象变动的基本趋势,第十章 时间序列分析,第四节 时间序列的分解分析,用时距扩大法,把时距扩大为季度,则可编制新的时间序列如下表所示:,第十章 时间序列分析,第四节 时间序列的分解分析,(二)移动平均法,1、定义:对时间数列的各项数值,按照一定的时距进行逐期移动,计算出一系列序时平均数,形成一个派生的平均数时间数列,以此削弱不规则变动的影响,显示出原数列的长期趋势。,2、
18、移动平均法的步骤,(1)确定移动时距,一般应选择奇数项进行移动平均;若原数列呈周期变动,应选择现象的变动周期作为移动的时距长度。,第十章 时间序列分析,第四节 时间序列的分解分析,(2)计算各移动平均值,并将其编制成时间数列,奇数项移动平均:,原数列,移动平均,新数列,第十章 时间序列分析,第四节 时间序列的分解分析,偶数项移动平均:,移动平均,新数列,原数列,第十章 时间序列分析,第四节 时间序列的分解分析,第十章 时间序列分析,第四节 时间序列的分解分析,(三)最小平方法,1、含义:最小平方法是通过时间序列的变动分析,建立定量分析数学模型,配合一条较为理想的趋势线来测定数列变化的趋势。,直
19、线趋势方程:,第十章 时间序列分析,第四节 时间序列的分解分析,(1)原数列的实际值与趋势值的离差平方和为最小,即,(2)原数列的实际值与趋势值的离差之和等于零,即,2、最小平方法配合趋势线时必须满足的两点要求:,第十章 时间序列分析,第四节 时间序列的分解分析,3、判断趋势类型的方法,(1)绘制散点图,第十章 时间序列分析,第四节 时间序列的分解分析,4、直线趋势,利用最小平方法配合趋势直线,即:,第十章 时间序列分析,第四节 时间序列的分解分析,将上述两式分别展开并进行整理后,可得到如下标准方程式:,解上述标准方程即可得到的a、b数值,第十章 时间序列分析,【例】已知我国19932005年
20、GDP资料(单位:亿元)如下,拟合直线趋势方程。,第十章 时间序列分析,第四节 时间序列的分解分析,解:,第十章 时间序列分析,第四节 时间序列的分解分析,求解a、b的简捷方法,第十章 时间序列分析,第四节 时间序列的分解分析,当t=0时,有,第十章 时间序列分析,第四节 时间序列的分解分析,第十章 时间序列分析,第四节 时间序列的分解分析,解:,第十章 时间序列分析,第四节 时间序列的分解分析,5.曲线趋势,(1)抛物线,抛物线趋势方程为:,采用最小平方法分别对a、b、c求偏导,并进行整理后得如下标准方程组:,第十章 时间序列分析,第四节 时间序列的分解分析,例:某企业1998-2003年工
21、业总产值及有关计算资料如下表所示,第十章 时间序列分析,第四节 时间序列的分解分析,代入简化后的方程组得:,第十章 时间序列分析,第四节 时间序列的分解分析,1999年趋势值,将 的各项取值代入上述趋势方程,便可计算出各期趋势值:,1998年趋势值:,其他年份依次类推。,第十章 时间序列分析,第四节 时间序列的分解分析,指数曲线趋势方程为:,(2)指数曲线,求解指数曲线方程中 的数值,通常先将指数曲线化为直线,然后再利用最小平方法,将指数曲线趋势方程两边分别求对数得:,设。则上述方程变化为如下方程:,第十章 时间序列分析,第四节 时间序列的分解分析,采用最小平方法确定的标准方程组如下:,解方程
22、组求得 数值后,再查反对数表即可得到 的数值,第十章 时间序列分析,第四节 时间序列的分解分析,例:某厂1997-2002年棉布产量及计算资料如下表所示:,第十章 时间序列分析,第四节 时间序列的分解分析,将上述资料代入简化后的标准方程组得:,8.436 8=6A 3.306 2=70B解得:A=1.406 1,B=0.004 72查反对数表得:,则由此而确定的指数曲线趋势方程为:,将 的各项取值代入所确定的指数曲线趋势方程,便可得到各期的趋势值:,1997年趋势值:,1998年趋势值,其他年份依次类推。,第十章 时间序列分析,第四节 时间序列的分解分析,四、季节变动的概念和测定,(一)季节变
23、动的概念,季节变动是指社会经济现象在一定时间长度内由于受自然与社会因素的影响而发生的具有周期性、规律性的重复变动。,(二)季节变动的测定方法,1.按月(季)平均法,1)定义:按月(季)平均法是对原时间序列资料不作处理,直接根据历年的周期数据加以平均(给出的资料是月度资料就按月平均,是季度资料就按季平均),并与总平均数对比,求出有关的季节比率,借以反映现象在各期的变动程度。,第十章 时间序列分析,第四节 时间序列的分解分析,2)按月(季)平均法求季节比率的步骤:,(1)分别就每年各月(季)的数字加总,求各该年的月(季)平均数,即:,(2)各年同月(季)数字加总,求若干年内同月(季)的平均数,即:
24、,第十章 时间序列分析,第四节 时间序列的分解分析,(3)若干年内每月(季)的数字总计,求总的月(季)平均数,即:,(4)将若干内同月(季)平均数与总月(季)平均数对比,求各月(季)的季节比率,即:,(5)调整季节比率。计算季节比率时,若是月度资料,各月季节比率之和应等于1200%;若是季度资料,各季季节比率之和应等于400%。若根据时间序列资料计算的结果不等,就应进行调整。,第十章 时间序列分析,第四节 时间序列的分解分析,首先,计算调整系数,公式为:,其次,计算调整后的季节比率,公式为:,第十章 时间序列分析,第四节 时间序列的分解分析,例:某旅店客房出租按月平均法测定的季节变动,第十章
25、时间序列分析,第四节 时间序列的分解分析,2.移动平均趋势剔除法,1)含义:移动平均趋势剔除法是先对时间序列计算移动平均,剔除长期趋势的影响,再测定季节变动。,2)步骤,(1)根据各年的月(季)资料(y)采用移动平均法求趋势值(T),月份资料按十二项移动平均,季度资料按四项移动平均;,(2)将实际数y与趋势值T对比,即y/T;,(3)将y/T按月(季)排列,再按月(季)求平均季节比率;,(4)调整季节比率。,例:某旅店客房出租按移动平均趋势剔除法测定的季节变动,第十章 时间序列分析,第四节 时间序列的分解分析,季节变动和不规则变动的测定,四季的季节比率之和为401.28%,应进行调整。,第十章
26、 时间序列分析,第四节 时间序列的分解分析,五、循环变动的测定,(一)直接法,直接法是将每年各季或各月的数值与上年同期进行对比,即求出年距发展速度:,直接法简便易行,可以大致消除趋势变动T和季节变动S的影响,适用于季度和月度时间序列。,第十章 时间序列分析,第四节 时间序列的分解分析,(二)剩余法,基本思想是;对各期时间序列资料用长期趋势和季节比率消除趋势变动和季节变动,而得反映循环变动与不规则变动的数列,然后再采用移动平均法消除不规则变动,便可得出反映循环变动程度的各期循环变动系数。,将CI数列进行移动平均修匀,则修匀后的数列即为各期循环变动的系数。,第十章 时间序列分析,第四节 时间序列的
27、分解分析,在一个时间序列的变动中,消除长期趋势变动和季节变动,即为不规则变动。,六、不规则变动的测定,用公式表示为:,不规则变动相对数在1上下波动。大于1,表示对数列的影响为正;小于1,表示对数列的影响为负;离1愈远,影响愈大;等于1,则表示无不规则变动。,第十章 时间序列分析,本 章 小 结:,1.总量指标时间序列是基本的时间序列,有时期数列和时点数列两种。相对指标和平均指标时间序列是由总量指标时间序列派生的。,2.水平指标包括发展水平与增长水平、平均发展水平与平均增长水平。总量指标序时平均数的计算是最基本的。相对指标或平均指标时间序列的序时平均数由分子、分母的序时平均数对比而得。增长水平是
28、两个不同时期的发展水平之差,各逐期增长量之和等于累积增长量。平均增长水平是逐期增长量的序时平均数。,第十章 时间序列分析,本 章 小 结:,3.速度指标包括发展速度和增长速度,平均发展速度和平均增长速度。定基发展速度与环比发展速度的数量关系是:环比发展速度的连乘积等于定基发展速度,相邻两期定基发展速度之商等于相应时期的环比发展速度。平均发展速度有水平法和累计法两种计算方法。增长速度等于发展速度减1,平均增长速度等于平均发展速度减1。,4.长期趋势测定的方法有时距扩大法、移动平均法和数学模型法。当各期的一级增长量大体为常数时,可配合直线趋势方程来测定现象变动的趋势。,第十章 时间序列分析,本 章
29、 小 结:,5.季节变动的测定。测定季节变动的主要方法是计算季节指数。季节指数越大,说明“季节越旺”;季节指数越小,则说明“季节越淡”;季节指数等于1说明没有季节变动。计算季节指数的方法有同期平均法和趋势剔除法。可利用季节指数进行预测。,6.循环变动是指变动周期大于一年的有一定规律性的重复变动。直接法是将每年各季或各月的数值与上年同期进行对比。剩余法的基本思路是:利用分解分析的原理,在时间序列中剔除长期趋势和季节变动,然后再消除不规则变动,从而揭示循环变动的特征。,第十章 时间序列分析,1.简述时间序列的概念和种类。2.时期数列和时点数列有什么区别?3.什么是发展水平、增减量、平均增减量、发展速度和增减速度?定基发展速度和环比发展速度、发展速度与增减速度的关系如何?4.什么是平均发展水平?它的计算可以分成几种情况?5.时间序列可以分解为哪几种因素?各种因素的基本概念是什么?,思考与练习,第十章 时间序列分析,第四节 时间序列的分解分析,直线趋势方程:,第十章 时间序列分析,第四节 时间序列的分解分析,抛物线趋势方程:,第十章 时间序列分析,第四节 时间序列的分解分析,指数曲线趋势方程:,
链接地址:https://www.31ppt.com/p-4722758.html