第十七讲弯曲变形积分法.ppt
《第十七讲弯曲变形积分法.ppt》由会员分享,可在线阅读,更多相关《第十七讲弯曲变形积分法.ppt(31页珍藏版)》请在三一办公上搜索。
1、教学内容:,梁的挠曲近似微分方程,积分法确定弯曲变形,教学要求:,1、了解梁变形的两个基本量(挠度和转角)及梁的挠曲近似微分方程;梁的刚度条件;简单超静定梁的解法.,2、理解积分法计算梁的弯曲变形;提高梁的抗弯能力的途径,重点:积分法计算梁的弯曲变形。,难点:确定积分常数的位移边界、连续条件,Mechanic of Materials,第十七讲的内容、要求、重难点,学时安排:2,2,第六章 平面弯曲,6.1 工程中的弯曲变形问题,目录,目录,6.2 挠曲线的微分方程,6.3 用积分法求弯曲变形,第十七讲目录,Mechanic of Materials,一、弯曲变形的意义:,1、解决弯曲刚度问题
2、,2、解决超静定问题,3、振动计算,6.1 工程中的弯曲变形问题,Mechanic of Materials,位移分析中所涉及的梁的变形和位移,都是弹性的。尽管变形和位移都是弹性的,但在工程设计中,对于结构或构件的弹性位移都有一定的限制。弹性位移过大,也会使结构或构件丧失正常功能,即发生刚度失效。,二、实际例子,1、吊车梁的变形不能过大,2、车床车削工件,6.1 工程中的弯曲变形问题,Mechanic of Materials,目录,机械传动机构中的齿轮轴,当变形过大时,两齿轮的啮合处将产生较大的挠度和转角,这就会影响两个齿轮之间的啮合,以致不能正常工作。,还会加大齿轮磨损,同时将在转动的过程
3、中产生很大的噪声。,当轴的变形很大时,轴在支承处也将产生较大的转角,从而使轴和轴承的磨损大大增加,降低轴和轴承的使用寿命。,6.1 工程中的弯曲变形问题,Mechanic of Materials,3、车床的主轴:,目录,在工程设计中还有另外一类问题,所考虑的不是限制构件的弹性位移,而是希望在构件不发生强度失效的前提下,尽量产生较大的弹性位移。例如,各种车辆中用于减振的钣簧,都是采用厚度不大的板条叠合而成,采用这种结构,钣簧既可以承受很大的力而不发生破坏,同时又能承受较大的弹性变形,吸收车辆受到振动和冲击时产生的动能,收到抗振和抗冲击的效果。,6.1 工程中的弯曲变形问题,Mechanic o
4、f Materials,一、弯曲变形的度量,1、梁的变形:,梁承载前后形状的变化称为变形,一般用各段梁曲率的变化表示。,2、梁的位移:,3、挠曲线:,纵向对称面上,作用横向力,变形后,轴线由原来的直线变成曲线,为纵向对称面内的一条光滑的曲线,称为挠曲线。,w=f(x),6.2 挠曲线的微分方程,Mechanic of Materials,梁变形前后位置的变化称为位移,位移包括线位移和角位移。,y,P,5、截面转角:,横截面变形前后的夹角,w,6、转角与挠曲线的关系:,4、挠度w:,在小变形和忽略剪力影响的条件下,线位移是截面形心沿垂直于梁轴线方向的位移,称为挠度w。,6.2 挠曲线的微分方程,
5、Mechanic of Materials,逆时针向为正,:向上为正,二、挠曲线的近似微分方程,M(x),M(x),1、纯弯曲时:,M(x)-x位置上的弯矩,EIz-x位置上的抗弯刚度,r-x位置上中性层曲线的 曲率半径,即该位置上 挠曲 线的曲率半径,1)若挠曲线 w=w(x)则,6.2 挠曲线的微分方程,Mechanic of Materials,2)-曲线 y=y(x)在x位置的斜率,即:,3)挠曲线的微分方程,M(x)0,M(x)0,-挠曲线的微分方程,6.2 挠曲线的微分方程,Mechanic of Materials,略去高阶无穷小:,4)挠曲线的近似微分方程,在小变形的前提下,q
6、 为小量。,一、挠曲线的近似微分方程,-挠曲线的近似微分方程,二、积分法求梁的变形原理,注:C、D由梁的边界条件、连续性条件决定,6.3 用积分法求弯曲变形,Mechanic of Materials,积分一次得转角方程为:,再积分一次得挠度方程为:,在固定铰支座和辊轴支座处,约束条件为挠度等于零:w=0;,3、连续条件:梁在弹性范围内加载,其轴线将弯曲成一条连续光滑曲线。,在固定端处,约束条件为挠度和转角都等于零:w=0,0。,1、依据:积分法中常数由梁的约束条件(位移边界条件)与变形连续条件确定。,6.3 用积分法求弯曲变形,Mechanic of Materials,三、小挠度微分方程的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第十七 弯曲 变形 积分
链接地址:https://www.31ppt.com/p-4722362.html