新人教版八年级数学下册教案.docx
《新人教版八年级数学下册教案.docx》由会员分享,可在线阅读,更多相关《新人教版八年级数学下册教案.docx(49页珍藏版)》请在三一办公上搜索。
1、教学设计(首页)授课教师: 备课日期: 年 月 日课 题 19.1.1 平行四边形及其性质(一)教学目标1 理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质2 会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证3 培养学生发现问题、解决问题的能力及逻辑推理能力教学重点平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用教学难点运用平行四边形的性质进行有关的论证和计算教 学用 具小黑板教学方法参与式授课时数共 2 课时第 1 课时板书设计19.1.1 平行四边形及其性质(一)平行四边形性质1平行四边形的对边相等平行四边形性质2 平行四边形的对角相等教学反
2、思审阅人年 月 日第 页 教学设计(续页) 教 学 活 动 设 计补 充 内 容一、课堂引入1我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象?平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?你能总结出平行四边形的定义吗?(1)定义:两组对边分别平行的四边形是平行四边形(2)表示:平行四边形用符号“”来表示如图,在四边形ABCD中,ABDC,ADBC,那么四边形ABCD是平行四边形平行四边形ABCD记作“ ABCD”,读作“平行四边形ABCD”AB/DC ,AD/BC , 四边形ABCD是平行四边形(判定); 四边形ABCD是平行四边形AB/
3、DC, AD/BC(性质)注意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角而三角形对边是指一个角的对边,对角是指一条边的对角(教学时要结合图形,让学生认识清楚)2【探究】平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下让学生根据平行四边形的定义画一个一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行外以,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致? (1)由定义知道,平行四边形的对边平行根据平行线的性质可知,在平行四边形中, 第 页教
4、学设计(续页) 教 学 活 动 设 计补 充 内 容相邻的角互为补角(相邻的角指四边形中有一条公共边的两个角注意和第一章的邻角相区别教学时结合图形使学生分辨清楚)(2)猜想 平行四边形的对边相等、对角相等下面证明这个结论的正确性已知:如图ABCD,求证:ABCD,CBAD,BD,BADBCD分析:作ABCD的对角线AC,它将平行四边形分成ABC和CDA,证明这两个三角形全等即可得到结论(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题) 平行四边形性质1平行四边形的对边相等平行四边形性质2 平行四边形的对角相等二、例习题分析例1(教材P93例1)
5、例2(补充)如图,在平行四边形ABCD中,AE=CF,求证:AF=CE分析:要证AF=CE,需证ADFCBE,由于四边形ABCD是平行四边形,因此有D=B ,AD=BC,AB=CD,又AE=CF,根据等式性质,可得BE=DF由“边角边”可得出所需要的结论三、随堂练习课本练习四、小结本节课你学到了什么知识?五、作业课本90页习题19、1 第1、2题第 页教学设计(首页)授课教师: 备课日期: 年 月 日课 题 19.1.1 平行四边形的性质(二)教学目标1 理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质2 能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题3
6、 培养学生的推理论证能力和逻辑思维能力教学重点平行四边形对角线互相平分的性质,以及性质的应用教学难点综合运用平行四边形的性质进行有关的论证和计算教 学用 具小黑板教学方法参与式授课时数共 2课时第 2 课时板书设计19.1.1 平行四边形的性质(二)(1)平行四边形是中心对称图形,两条对角线的交点是对称中心; (2)平行四边形的对角线互相平分教学反思审阅人年 月 日第 页 教学设计(续页) 教 学 活 动 设 计补 充 内 容一、课堂引入1复习提问:(1)什么样的四边形是平行四边形?四边形与平行四边形的关系是:(2)平行四边形的性质:具有一般四边形的性质(内角和是)角:平行四边形的对角相等,邻
7、角互补 边:平行四边形的对边相等 2【探究】:请学生在纸上画两个全等的ABCD和EFGH,并连接对角线AC、BD和EG、HF,设它们分别交于点O把这两个平行四边形落在一起,在点O处钉一个图钉,将ABCD绕点O旋转,观察它还和EFGH重合吗?你能从子中看出前面所得到的平行四边形的边、角关系吗?进一步,你还能发现平行四边形的什么性质吗?结论:(1)平行四边形是中心对称图形,两条对角线的交点是对称中心; (2)平行四边形的对角线互相平分二、例习题分析例1(补充) 已知:如图421, ABCD的对角线AC、BD相交于点O,EF过点O与AB、CD分别相交于点E、F求证:OEOF,AE=CF,BE=DF第
8、 页教学设计(续页) 教 学 活 动 设 计补 充 内 容【引申】若例1中的条件都不变,将EF转动到图b的位置,那么例1的结论是否成立?若将EF向两方延长与平行四边形的两对边的延长线分别相交(图c和图d),例1的结论是否成立,说明你的理由例2(教材P94的例2)已知四边形ABCD是平行四边形,AB10cm,AD8cm,ACBC,求BC、CD、AC、OA的长以及ABCD的面积分析:由平行四边形的对边相等,可得BC、CD的长,在RtABC中,由勾股定理可得AC的长再由平行四边形的对角线互相平分可求得OA的长,根据平行四边形的面积计算公式:平行四边形的面积=底高(高为此底上的高),可求得ABCD的面
9、积(平行四边形的面积小学学过,再次强调“底”是对应着高说的,平行四边形中,任一边都可以作为“底”,“底”确定后,高也就随之确定了)3.平行四边形的面积计算三、随堂练习课本随堂练习四、小结本节课你学到了什么知识?五、作业课本90页习题19、1 第3、4题第 页教学设计(首页)授课教师: 备课日期: 年 月 日课 题 19.1.2(一) 平行四边形的判定教学目标1在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法 2会综合运用平行四边形的判定方法和性质来解决问题 3培养用类比、逆向联想及运动的思维方法来研究问题 教学重点平行四边形的判定方法及应用教学难点平行四边形的判定定理
10、与性质定理的灵活应用教 学用 具小黑板教学方法参与式授课时数共 2 课时第 1课时板书设计19.1.2(一) 平行四边形的判定平行四边形判定方法1 两组对边分别相等的四边形是平行四边形。平行四边形判定方法2 对角线互相平分的四边形是平行四边形。教学反思审阅人年 月 日第 页 教学设计(续页) 教 学 活 动 设 计补 充 内 容一、课堂引入1欣赏图片、提出问题展示图片,提出问题,在刚才演示的图片中,有哪些是平行四边形?你是怎样判断的?2【探究】:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?让学生利用手中的学具硬纸板条通过观察、测量、猜想
11、、验证、探索构成平行四边形的条件,思考并探讨:(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?(2)你怎样验证你搭建的四边形一定是平行四边形?(3)你能说出你的做法及其道理吗?(4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?(5)你还能找出其他方法吗?从探究中得到:平行四边形判定方法1 两组对边分别相等的四边形是平行四边形。平行四边形判定方法2 对角线互相平分的四边形是平行四边形。二、例习题分析例1(教材P96例3)已知:如图ABCD的对角线AC、BD交于点O,E、F是AC上的两点,并且AE=CF求证:四边形BFDE是平行四边形分析:欲证四边形BFDE是平
12、行四边形可以根据判定方法2来证明(证明过程参看教材)问;你还有其它的证明方法吗?比较一下,哪种证明方法简单例2(补充) 已知:如图,ABBA,BCCB, CAAC求证:(1) ABCB,CABA,BCAC;第 页教学设计(续页) 教 学 活 动 设 计补 充 内 容(2) ABC的顶点分别是BCA各边的中点 例3(补充)小明用手中六个全等的正三角形做拼图游戏时,拼成一个六边形你能在图中找出所有的平行四边形吗?并说说你的理由 解:有6个平行四边形,分别是ABOF,ABCO, BCDO,CDEO,DEFO,EFAO 理由是:因为正ABO正AOF,所以AB=BO,OF=FA根据 “两组对边分别相等的
13、四边形是平行四边形”,可知四边形ABCD是平行四边形其它五个同理三、随堂练习课本随堂练习四、小结本节课你学到了什么知识?五、作业课本90页习题19、1 第5题第 页教学设计(首页)授课教师: 备课日期: 年 月 日课 题 19.1.2(二) 平行四边形的判定教学目标1掌握用一组对边平行且相等来判定平行四边形的方法 2会综合运用平行四边形的四种判定方法和性质来证明问题 3通过平行四边形的性质与判定的应用,启迪学生的思维,提高分析问题的能力 教学重点平行四边形各种判定方法及其应用,尤其是根据不同条件能正确地选择判定方法教学难点平行四边形的判定定理与性质定理的综合应用教 学用 具小黑板教学方法参与式
14、授课时数共 2 课时第 2 课时板书设计19.1.2(二) 平行四边形的判定教学反思审阅人年 月 日第 页 教学设计(续页) 教 学 活 动 设 计补 充 内 容一、课堂引入1 平行四边形的性质;2 平行四边形的判定方法;3 【探究】 取两根等长的木条AB、CD,将它们平行放置,再用两根木条BC、AD加固,得到的四边形ABCD是平行四边形吗?结论:一组对边平行且相等的四边形是平行四边形二、例习题分析例1(补充)已知:如图,ABCD中,E、F分别是AD、BC的中点,求证:BE=DF 分析:证明BE=DF,可以证明两个三角形全等,也可以证明四边形BEDF是平行四边形,比较方法,可以看出第二种方法简
15、单 此题综合运用了平行四边形的性质和判定,先运用平行四边形的性质得到判定另一个四边形是平行四边形的条件,再应用平行四边形的性质得出结论;题目虽不复杂,但层次有三,且利用知识较多,因此应使学生获得清晰的证明思路例2(补充)已知:如图,ABCD中,E、F分别是AC上两点,且BEAC于E,DFAC于F求证:四边形BEDF是平行四边形分析:因为BEAC于E,DFAC于F,所以BEDF需再证明BE=DF,这需要证明ABE与CDF全等,由角角边即可三、随堂练习课本随堂练习四、小结本节课你学到了什么知识?五、作业课本90页习题19、1 第6、7题第 页教学设计(首页)授课教师: 备课日期: 年 月 日课 题
16、 19.2.1 矩形(一)教学目标 1掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系 2会初步运用矩形的概念和性质来解决有关问题 3渗透运动联系、从量变到质变的观点教学重点矩形的性质教学难点矩形的性质的灵活应用教 学用 具小黑板教学方法参与式授课时数共 2 课时第 1课时板书设计19.2.1 矩形(一)矩形定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形)矩形性质1 矩形的四个角都是直角矩形性质2 矩形的对角线相等教学反思审阅人年 月 日第 页 教学设计(续页) 教 学 活 动 设 计补 充 内 容一、课堂引入1展示生活中一些平行四边形的实际应用图片(推拉门,活动衣架,篱笆、井
17、架等),想一想:这里面应用了平行四边形的什么性质?2思考:拿一个活动的平行四边形教具,轻轻拉动一个点,观察不管怎么拉,它还是一个平行四边形吗?为什么?(动画演示拉动过程如图)3再次演示平行四边形的移动过程,当移动到一个角是直角时停止,让学生观察这是什么图形?(小学学过的长方形)引出本课题及矩形定义矩形定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形)矩形是我们最常见的图形之一,例如书桌面、教科书的封面等都有矩形形象【探究】在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上(作出对角线),拉动一对不相邻的顶点,改变平行四边形的形状 随着的变化,两条对角线的长度分别是怎样变化
18、的? 当是直角时,平行四边形变成矩形,此时它的其他内角是什么样的角?它的两条对角线的长度有什么关系?操作,思考、交流、归纳后得到矩形的性质矩形性质1 矩形的四个角都是直角矩形性质2 矩形的对角线相等 如图,在矩形ABCD中,AC、BD相交于点O,由性质2有AO=BO=CO=DO=AC=BD因此可以得到直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半五、例习题分析 第 页教学设计(续页) 教 学 活 动 设 计补 充 内 容例1 (教材P104例1)已知:如图,矩形ABCD 的两条对角线相交于点O,AOB=60,AB=4cm,求矩形对角线的长分析:因为矩形是特殊的平行四边形,所以它具有
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新人 八年 级数 下册 教案
链接地址:https://www.31ppt.com/p-4719702.html