《四章《一次函数》教案(第二部分).doc》由会员分享,可在线阅读,更多相关《四章《一次函数》教案(第二部分).doc(21页珍藏版)》请在三一办公上搜索。
1、 提出问题,创设情境 一九九六年,鸟类研究者在芬兰给一只燕鸥(候鸟)套上标志环个月零周后人们在256万千米外的澳大利亚发现了它 这只百余克重的小鸟大约平均每天飞行多少千米(精确到10千米)? 这只燕鸥的行程y(千米)与飞行时间x(天)之间有什么关系? 这只燕鸥飞行个半月的行程大约是多少千米? 我们来共同分析: 一个月按30天计算,这只燕鸥平均每天飞行的路程不少于: 25600(304+7)200(km) 若设这只燕鸥每天飞行的路程为200km,那么它的行程y(千米)就是飞行时间x(天)的函数函数解析式为: y=200x(0x127) 这只燕鸥飞行个半月的行程,大约是x=45时函数y=200x的
2、值即 y=20045=9000(km) 以上我们用y=200x对燕鸥在个月零周的飞行路程问题进行了刻画尽管这只是近似的,但它可以作为反映燕鸥的行程与时间的对应规律的一个模型 类似于y=200x这种形式的函数在现实世界中还有很多它们都具备什么样的特征呢?我们这节课就来学习 导入新课 首先我们来思考这样一些问题,看看变量之间的对应规律可用怎样的函数来表示?这些函数有什么共同特点? 圆的周长L随半径r的大小变化而变化 铁的密度为78g/cm3铁块的质量m(g)随它的体积V(cm3)的大小变化而变化 每个练习本的厚度为05cm一些练习本摞在一些的总厚度h(cm)随这些练习本的本数n的变化而变化 冷冻一
3、个0的物体,使它每分钟下降2物体的温度()随冷冻时间t(分)的变化而变化答应:根据圆的周长公式可得:L=2r 依据密度公式p=可得:m=78V 据题意可知: h=05n 据题意可知:T=-2t 我们观察这些函数关系式,不难发现这些函数都是常数与自变量乘积的形式,和y=200x的形式一样 一般地,形如y=kx(k是常数,k0)的函数,叫做正比例函数(proportional func-tion),其中k叫做比例系数 我们现在已经知道了正比例函数关系式的特点,那么它的图象有什么特征呢? 活动一 画出下列正比例函数的图象,并进行比较,寻找两个函数图象的相同点与不同点,考虑两个函数的变化规律 y=2x
4、 y=-2x 结论:函数y=2x中自变量x可以是任意实数列表表示几组对应值:x-3-2-10123y-6-4-20246 画出图象如图(1)y=-2x的自变量取值范围可以是全体实数,列表表示几组对应值:x-3-2-10123y6420-2-4-6 画出图象如图(2) 两个图象的共同点:都是经过原点的直线 不同点:函数y=2x的图象从左向右呈上升状态,即随着x的增大y也增大;经过第一、三象限函数y=-2x的图象从左向右呈下降状态,即随x增大y反而减小;经过第二、四象限 尝试练习: 在同一坐标系中,画出下列函数的图象,并对它们进行比较y=x y=-xx-6-4-20246y=x-3-2-10123
5、Y=-x3210-1-2-3 比较两个函数图象可以看出:两个图象都是经过原点的直线函数y=x的图象从左向右上升,经过三、一象限,即随x增大y也增大;函数y=-x的图象从左向右下降,经过二、四象限,即随x增大y反而减小 让学生在完成上述练习的基础上总结归纳出正比例函数解析式与图象特征之间的规律:正比例函数y=kx(k是常数,k0)的图象是一条经过原点的直线当x0时,图象经过三、一象限,从左向右上升,即随x的增大y也增大;当k0,直线与y轴交于正半轴;当b0时,直线与y轴交于负半轴;当b=0时,直线与y轴交于坐标原点. 2k0,b0时,直线经过一、二、三象限;k0,b0时,直线经过一、三、四象限;
6、k0,b0时,直线经过一、二、四象限;k0,b0时,直线经过二、三、四象限.课后作业1.已知函数,当m为何值时,这个函数是一次函数.并且图象经过第二、三、四象限? 2.已知关于x的一次函数y(-2m1)x2m2m-3.(1)若一次函数为正比例函数,且图象经过第一、第三象限,求m的值;(2)若一次函数的图象经过点(1,-2),求m的值.3.已知函数.(1)当m取何值时,y随x的增大而增大?(2)当m取何值时,y随x的增大而减小?4.已知点(-1,a)和都在直线上,试比较a和b的大小.你能想出几种判断的方法?5.某个一次函数的图象位置大致如下图所示,试分别确定k、b的符号,并说出函数的性质.142
7、2 专题: 一次函数应用(一)教学目标1.理解待定系数法; 2.能用待定系数法求一次函数,用一次函数表达式解决有关现实问题3、体会用“数形结合”思想解决数学问题教学重难点待定系数法确定一次函数解析式教学过程提出问题,创设情境 一次函数关系式ykxb(k0),如果知道了k与b的值,函数解析式就确定了,那么有怎样的条件才能求出k和b呢?问题1 已知一个一次函数当自变量x-2时,函数值y-1,当x3时,y-3能否写出这个一次函数的解析式呢?根据一次函数的定义,可以设这个一次函数为:ykxb(k0),问题就归结为如何求出k与b的值由已知条件x-2时,y-1,得 -1-2kb由已知条件x3时,y-3,
8、得 -33kb两个条件都要满足,即解关于x的二元一次方程 解得所以,一次函数解析式为问题2 已知弹簧的长度y(厘米)在一定的限度内是所挂物质量x(千克)的一次函数现已测得不挂重物时弹簧的长度是6厘米,挂4千克质量的重物时,弹簧的长度是7.2厘米,求这个一次函数的关系式考虑 这个问题中的不挂物体时弹簧的长度6厘米和挂4千克质量的重物时,弹簧的长度7.2厘米,与一次函数关系式中的两个x、y有什么关系?导入新课上题可作如下分析:已知y是x的函数关系式是一次函数,则关系式必是ykxb的形式,所以要求的就是系数k和b 的值而两个已知条件就是x和y的两组对应值,也就是当x0时,y6;当x4时,y7.2可以
9、分别将它们代入函数式,转化为求k与b 的二元一次方程组,进而求得k与b的值解 设所求函数的关系式是ykxb(k0),由题意,得解这个方程组,得所以所求函数的关系式是y0.3x6(其中自变量有一定的范围)讨论 1本题中把两对函数值代入解析式后,求解k和b的过程,转化为关于k和b的二元一次方程组的问题2这个问题是与实际问题有关的函数,自变量往往有一定的范围问题3 若一次函数ymx-(m-2)过点(0,3),求m的值分析 考虑到直线ymx-(m-2)过点(0,3),说明点(0,3)在直线上,这里虽然已知条件中没有直接给出x和y的对应值,但由于图象上每一点的坐标(x,y)代表了函数的一对对应值,它的横
10、坐标x表示自变量的某一个值,纵坐标y表示与它对应的函数值所以此题转化为已知x0时,y3,求m即求关于m的一元一次方程解 当x0时,y3即:3-(m-2)解得m-1这种先设待求函数关系式(其中含有未知的常数系数),再根据条件列出方程或方程组,求出未知系数,从而得到所求结果的方法,叫做待定系数法例题与练习例1 已知一次函数ykxb的图象经过点(3,5)和点(-4,-9),求当x5时,函数y的值分析 1图象经过点(3,5)和点(-4,-9),即已知当x3时,y5;x-4时,y-9代入函数解析式中,求出k与b2虽然题意并没有要求写出函数的关系式,但因为要求x5时,函数y的值,仍需从求函数解析式着手解
11、由题意,得解这个方程组,得这个函数解析式为y2x-1当x5时,y25-19例2 已知一次函数的图象如下图,写出它的关系式分析 从“形” 看,图象经过x轴上横坐标为2的点,y轴上纵坐标是-3的点从“数”看,坐标(2,0),(0,-3)满足解析式解 设:所求的一次函数的解析式为ykxb(k0)直线经过点(2,0),(0,-3),把这两点坐标代入解析式,得 解得 所以所求的一次函数的关系式是例3 若直线y-kxb与直线y-x平行,且与y轴交点的纵坐标为-2;求直线的表达式.分析 直线y-kxb与直线y-x平行,可求出k的值,与y轴交点的纵坐标为-2,可求出b的值.解 因为直线y-kxb与直线y-x平行,所以k-1,又因为直线与y轴交点的纵坐标为-2,所以b-2,因此所求的直线的表达式为y-x-2.课时小结本节课,我们讨论了一次函数解析式的求法。求一次函数的解析式往往用待定系数法,即根据题目中给出的两个条件确定一次函数解析式ykxb(k0)中两个待定系数k和b的值;课后作业1.根据下列条件写出相应的函数关系式
链接地址:https://www.31ppt.com/p-4719538.html