《《221椭圆及其标准方程》教学设计.doc》由会员分享,可在线阅读,更多相关《《221椭圆及其标准方程》教学设计.doc(6页珍藏版)》请在三一办公上搜索。
1、教学设计数学选修2-1椭圆及其标准方程(第一课时)巨野县第一中学 谷建荣2.2.1椭圆及其标准方程教学设计巨野县第一中学 谷建荣一、 教材及学情分析 本节课时普通高中课程标准试验教科书数学(人民教育出版社课程教材研究所,中学数学课程教材研究室开发中心编著)选修2-1第二章第二节椭圆及其标准方程第一课时,本节继续采用坐标法来探究椭圆的几何特征,建立它们的方程,通过方程研究它们的简单性质,并用坐标法解决一些与椭圆有关的简单几何问题和实际问题,进一步感受数形结合思想的魅力。本节是直线,圆的进一步加深,也是为学习后面双曲线,抛物线知识而奠基,椭圆是圆在某一方向上的拉伸或压缩,故在学习椭圆时学生并非感到
2、很突然,而是一种似曾相识的感觉,让学生在相似中找到不同,在不同中发现问题探索新知。根据学习的最近发展区理论,在熟悉中发现问题并解决问题是数学学习动力的主要来源。高二的学生探究问题的意识加强、好胜,抓住这个心理、生理特点,在教学中注意探究的应用,授人以鱼,不如授人以渔,让学生去发现问题并解决问题。二、 教学目标1、 知识与技能目标(1)、理解椭圆的定义(2)、掌握椭圆的标准方程,在化简椭圆方程的过程中提高学生的运算能力2、 过程与方法目标(1)、通过探究点的运动情况经历椭圆概念的形成过程,学习在问题中发现数量关系,提炼数学概念的能力,由具体到抽象,从个别到一般的数学归纳的方法,逐步掌握数学概念形
3、成的本质,提高学生的抽象概括能力。(2)、学会动点轨迹问题的求解思路-转移关系法(3)、对学生进行发现问题,解决问题的方法指导,培养学生的数学素养3、 情感态度价值观目标(1)、发挥学生的主体地位,让学生在试验中通过观察,思考,尝试,归纳,反思,改进最终形成概念增强学生的问题意识,(2)、重视学生的知识获得过程,知其然更知其所以然,让他们在经历知识产生过程中找到学习数学的乐趣,激发学习数学的热情。三、 教学重点难点(1)、教学重点:椭圆的定义及其标准方程,标准方程的推导(2)、教学难点:椭圆定义核心的发现,标准方程的化简及建系不同的速写方程(3)、难点的突破方法:通过试验演示,突破定义理解难题
4、。应用坐标旋转让学生发现其实是坐标轴的变换来突破难点。四、 教法与学法注意到本节课的特点及学生特点,采用学生自主学习,教师引导为主要教学方法。通过试验探究提出问题、归纳猜想、验证猜想、提炼结论、升华结论、应用提高的教学过程,让学生参与到课堂中来,体验知识的假设,验证,应用的过程,真正的在学习上成为主人。五、 教学过程教学步骤问题问题设计意图师生活动探究新知引入新课1取一条定长的细绳,两端固定同一点处拉紧绳子,动点的轨迹是?如果固定在不同点处呢?(点击按钮“探究问题”进行演示)通过几何画板的动画演示使运动更具有直观性来增强学生的感官认识,使他们在椭圆的产生更具有神秘性以增加本节课的吸引力。学生观
5、察探讨,提取印象得出轨迹为圆、椭圆。老师点击按钮“显示轨迹”让学生感觉成为真实,给他们成功的喜悦。2椭圆上的点具有怎样的关系呢?让学生观察上面的数值变化或注意题目已知“定长的绳子”。让学生找出条件一个目的可以突破本节的难点,同时还可以增加学生学习的积极性和主动性,使他们经历知识的发现,归纳的过程,找学生回答发现的结论“|MF1|+|MF2|=2a”老师反问,让学生对所猜想的结论给出简单的论证,使数学的直观思维更缜密。在学生总结的基础上给出椭圆的定义:平面内一动点到两个顶点的距离之和是一个常数(大于两定点之间的距离)的点的轨迹叫做椭圆。在探索中学习新知1在定义中为什么要求常数要大于两定点之间的距离呢?可以相等或小于么?让学生对自己总结的结论给出完美的总结,以期优化学生思维,培养学生的归纳能力及分析能力。学生在下面思考,得出结论老师提问。最后老师拉动点F2观察点的轨迹来进行验证学生的结论:当2a=|F1F2|,此时点的轨迹是以F1,F2为端点的线段。当2a|F1F2|)的点 例题3解题板书。的轨迹是椭圆 。2a=|F1F2|的点的轨迹是线段 。2a|F1F2|的点的轨迹不存在椭圆的两种标准方程6
链接地址:https://www.31ppt.com/p-4718149.html