结识抛物线(1)y=ax2的图象和性质[1].ppt
《结识抛物线(1)y=ax2的图象和性质[1].ppt》由会员分享,可在线阅读,更多相关《结识抛物线(1)y=ax2的图象和性质[1].ppt(22页珍藏版)》请在三一办公上搜索。
1、第二章二次函数,结识抛物线,Email:,学习目标,1、会用描点法画二次函数y=x2和y=-x2的图象;,2、根据函数y=x2和y=-x2的图象,直观地了解它的性质.,你想直观地了解它的性质吗?,数形结合,直观感受,在二次函数y=x2中,y随x的变化而变化的规律是什么?,观察y=x2的表达式,选择适当x值,并计算相应的y值,完成下表:,你会用描点法画二次函数y=x2的图象吗?,描点,连线,y=x2,观察图象,回答问题串,(1)你能描述图象的形状吗?与同伴进行交流.,(2)图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点,并与同伴交流.,(3)图象 与x轴有交点吗?如果有,交点坐
2、标是什么?,(4)当x0呢?,(5)当x取什么值时,y的值最小?最小值是什么?你是如何知道的?,这条抛物线关于y轴对称,y轴就 是它的对称轴.,对称轴与抛物线的交点叫做抛物线的顶点.,二次函数y=x2的图象形如物体抛射时所经过的路线,我们把它叫做抛物线.,当x0(在对称轴的左侧)时,y随着x的增大而减小.,当x0(在对称轴的右侧)时,y随着x的增大而增大.,抛物线y=x2在x轴的上方(除顶点外),顶点是它的最低点,开口向上,并且向上无限伸展;当x=0时,函数y的值最小,最小值是0.,在学中做在做中学,(1)二次函数y=-x2的图象是什么形状?,你能根据表格中的数据作出猜想吗?,(2)先想一想,
3、然后作出它的图象,(3)它与二次函数y=x2的图象有什么关系?,x,y,0,-4,-3,-2,-1,1,2,3,4,-10,-8,-6,-4,-2,2,-1,描点,连线,y=-x2,观察图象,回答问题串,(1)你能描述图象的形状吗?与同伴进行交流.,(2)图象 与x轴有交点吗?如果有,交点坐标是什么?,(3)当x0呢?,(4)当x取什么值时,y的值最小?最小值是什么?你是如何知道的?,(5)图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点,并与同伴交流.,y=-x2,描点,连线,这条抛物线关于y轴对称,y轴就 是它的对称轴.,对称轴与抛物线的交点叫做抛物线的顶点.,二次函数y=
4、-x2的图象形如物体抛射时所经过的路线,我们把它叫做抛物线.,y,当x0(在对称轴的左侧)时,y随着x的增大而增大.,当x0(在对称轴的右侧)时,y随着x的增大而减小.,y,抛物线y=-x2在x轴的下方(除顶点外),顶点是它的最高点,开口向下,并且向下无限伸展;当x=0时,函数y的值最大,最大值是0.,看图说话,函数y=ax2(a0)的图象和性质:,y=x2,y=-x2,它们之间有何关系?,二次函数y=ax2的性质,.顶点坐标与对称轴,.位置与开口方向,.增减性与最值,抛物线,顶点坐标,对称轴,位置,开口方向,增减性,最值,y=x2,y=-x2,(0,0),(0,0),y轴,y轴,在x轴的上方
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 结识 抛物线 ax2 图象 性质
链接地址:https://www.31ppt.com/p-4701219.html