8第八章 金属基复合材料的损伤与失效文档资料.ppt
《8第八章 金属基复合材料的损伤与失效文档资料.ppt》由会员分享,可在线阅读,更多相关《8第八章 金属基复合材料的损伤与失效文档资料.ppt(118页珍藏版)》请在三一办公上搜索。
1、2023/5/7,1,损伤与失效形式,基体内孔洞的成核、长大与汇合导致的基体塑性失效,增强相和基体之间界面的脱开导致的基体塑性失效,增强相的断裂导致的基体塑性失效,金属基复合材料,2023/5/7,2,8.1 金属基复合材料损伤的基本理论8.1.1基体损伤模型 金属基复合材料的基体是延性的金属或合金,失效前往往要经历较大的塑性变形,从细观层次上看,损伤可能涉及两级孔洞的演化:大孔洞由增强相的脱粘产生,大孔洞或增强相之间基体中的变形局部化带的分布有小一级的孔洞,小一级孔洞形核、长大,最后聚合为延性裂纹,其演化由Gurson-Tvergaard 模型描述,其屈服函数为,这里kk是宏观应力分量,eq
2、是宏观等效应力,m是基体材料的实际屈服应力,f和f*分别是实际和等效孔洞体积分数,fC和fF对应于材料损伤开始加速及彻底失效时所对应的孔洞体积分数,qi是Tvergaard 引入的用以反映孔洞相互作用效应的可调参数,微孔洞的增长率f包括已有孔洞的长大和新孔洞的形核两个部分:,这里是宏观体积塑性应变部分,是细观等效塑性应变,可通过宏、细观塑性功率相等的条件求得,(8-4),式(8-3)的第一部分可以通过塑性体积不可压缩条件得到,对于应变控制形核的情况,式(8-3)的第二部分可表为如下形式,2023/5/7,5,其中fN是可以形核粒子的体分数,N是形核时所对应的应变,SN为形核应变的标准差,h为硬
3、化函数。基体设为幂硬化材料,(8-6),N为硬化指数,EM为杨氏模量,为初始屈服应力。,2023/5/7,6,8.1.2脆性材料的失效 脆性材料的失效准则则采取最大主应力准则形式。如果、和分别用来表示三个主应力,那么失效准则为,(8-7),这里 是脆性材料的单向拉伸强度。,2023/5/7,7,8.1.3界面损伤模型 金属基复合材料的界面往往很薄,远小于其增强相纤维直径的尺寸。Needle-man和Tvergaard提出了界面的内聚力模型,用来模拟初始无厚界面层的损伤。界面的内聚力模型旨在建立界面粘结力与界面位移间断之间的关系,不受常规应变单元对单元长宽尺寸比例的限制,适合于描述薄界面的情况。
4、设T 是界面中的粘结力,是界面位移间断,它们之间的关系可写为下述分量形式:,2023/5/7,8,(8-8),(8-10),(8-9),2023/5/7,9,式中:、是界面所经历过的最大法向和切向的位移间断,下标n、t 分别表示界面的法向和切向,H 是单位阶跃函数,用以区别界面法向是受拉状态还是受压状态,同时也用于判定界面是否已经完全分离,Et表示界面的切向模量,En 和Kn 分别表示界面法向受拉及受压时的模量,为防止计算中界面相互嵌入,Kn可以取一个大值,n 和t 为界面受单纯拉伸和单纯剪切时的临界位移间断值。无量纲参数max是一个单调增长的量,用来表征界面的损伤:max=0 对应于界面完好
5、无损的状态;max1 表示界面已经完全脱粘。若在某一段载荷变化过程中,max值不增加,则界面粘结力的增量与界面间断的增量呈线性关系。,、,2023/5/7,10,当界面完全脱粘后,界面之间只有接触效应。式中为界面的磨擦系数,满足条件:时,界面相对位移的增量为零。界面的法向及切向的最大强度可以由界面受纯拉伸及纯剪切得到:,和 可代替界面模量En 和Et 作为表征界面性质的独立参数。,2023/5/7,11,8.2 金属基复合材料的拉伸性质及其损伤机制 采用广义自洽有限元迭代平均化方法来研究金属基复合材料的拉伸性质及其损伤机制。带组分损伤的复合材料的拉伸性质可采用如下形式:,(8-11),2023
6、/5/7,12,式中:是复台材料的增量拉伸模量,则表示基体的平均增量拉伸模量;和 分别为增强相和界面的弹性模量。为了保持数值计算的稳定性,界面相中失效的部分作为新的弱化相来处理,本文中将此弱相的弹性模量 选为增强相弹性模量 的1/10000;和 分别表示增强相的体分比和初始界面相的体分比(即未发生损伤时);而 则代表界面中失效部分的体积分数,它随着外荷载的变化而不断演化;增强相和残余的完好界面相的应力集中因子分别由 和 表示,是界面中失效部分的应力集中因子(实际上是个非常小的量)。,2023/5/7,13,2023/5/7,14,8.3 典型金属基复合材料的损伤分析 8.3.1 连续纤维增强金
7、属基复合材料 连续纤维增强的MMC,纤维体积分数为fV=30%,纤维理想化为四方周期分布,利用对称性,取四分之一纤维计算,计算胞元如图8-1所示,由连续性条件,变形时,胞元的各个边界仍保持水平或垂直,这是一个很强的条件。图8-2 给出了不同界面强度条件下,此时界面的临界相对位移为n=t=0.02r0,保持为常数。图8-3 给出了界面临界相对位移对材料的 曲线的影响,此时界面强度n=t=1.50保持不变。,2023/5/7,15,2023/5/7,16,不同的界面强度将导致不同的损伤模式,图8-4 是不同界面强度的胞元在失效阶段的损伤分布。,2023/5/7,17,图8-4 不同界面强度下胞元失
8、效阶段的损伤分布,2023/5/7,18,(1)界面的性质是决定材料性质的重要因素,界面强度越高,界面脱粘发生得越晚,材料的最终强度越大;若界面强度很大,脱粘不发生,材料的强度由基体的性质决定。,(2)界面的临界相对位移值越大,界面的韧性越好,脱粘发生得越晚。,(3)不同界面强度对应的计算胞元的失效模式不同,弱界面失效时,界面完全脱粘,纤维剥落;中等界面失效时,部分界面脱粘;强界面失效时,失效在基体中发生。,综上所述,对于连续纤维增强MMC的损伤分析可归纳为,2023/5/7,19,8.3.2 短纤维/晶须增强金属基复合材料 短纤维增强MMC 的损伤形式往往比较复杂,增强相附近的应力集中会引发
9、诸如增强相断裂、界面脱粘和基体断裂等损伤。短纤维分布的理想化模型如图8-5(a)、8-5(b)所示,轴向端部相互对齐,横向按六边形分布。计算胞元如图中灰色部分所示,在均匀轴向荷载下,简化为轴对称问题,其边界条件及有限元网格见图8-5(c),灰色为纤维单元,白色为基体单元,两者之间布置一层界面单元。,2023/5/7,20,由图8-5(b)所示的圆形与六边形面积等效原则,轴对称计算胞元半径可表示为,纤维体积分数为。定义纤维及计算胞元的长径比为:,。,2023/5/7,21,对于SiC 晶须增强的2124 铝合金复合材料(SiC Whisker2124Aluminum alloy)而言。晶须体积分
10、数为17.5%,晶须的平均直径为0.5 m,复合材料轧制过程中晶须断裂后的平均长度为2.5m,故晶须和计算体元的长径比取为f=5和c=3.5。基体材料的杨氏模量与初始屈服强度之比为EM/0=200,泊松比M=0.33,硬化指数为N=0.13。细观损伤参数取为:q1=q3=1.25,q2=1.0,fN=0.04,SN=0.1,N=0.3,fc=0.15,fF=0.20。代入单向拉伸的有限元计算后,发现以上的参数能符合基体材料的实验曲线。晶须为线弹性材料,其模量与基体的模量之比为Ef/EM,泊松比为f=0.2。晶须的极限应变在1%2%之间,这里取晶须的强度为10。界面的临界位移间断取为n=t=0.
11、02rf,界面强度的范围为1.5100。,2023/5/7,22,2023/5/7,23,图8-6胞元强度与界面强度的关系,图8-6 给出了不同界面强度下计算胞元上的平均应力-应变曲线。,2023/5/7,24,图8-7 给出了不同界面强度下计算胞元最终的失效模式,界面强度较小时,晶须端部及端部附近的侧面发生脱粘,损伤集中在晶须端部附近的基体中。界面强度增加后,晶须端部的界面可能也会脱粘,但晶须侧面传递的荷载,足以使晶须断裂,并且在断口附近的界面发生脱粘,基体中的损伤集中在断口部位。随着界面强度的增大,晶须端部的界面将不发生脱粘,而晶须断口处的界面脱粘范围也减小,基体损伤也分布得更集中。,图8
12、-7 不同界面强度下计算胞元的损伤分布和失效模式,2023/5/7,25,图8-8纤维长径比对纤维断裂及界面脱粘的影响,图8-8 给出了不同长径比下,界面脱粘(对应于弱界面)或纤维断裂(对应于强界面)时所对应的平均应力与基体初始屈服应力的比值d/0,b/0和平均应变。计算证实了材料刚性和强度随着纤维长径比增大而增大,但延性降低的结论。,2023/5/7,26,2023/5/7,27,8.3.3 颗粒增强金属基复合材料 用细观力学的方法研究颗粒增强型复合材料颗粒断裂对宏观性能的影响。对于SiCP 或Al2O3颗粒增强型铝基复合材料,在简单拉伸外载作用下,增强颗粒SiCP 或Al2O3将会发生断裂
13、。SiCP 颗粒将沿垂直拉伸方向断裂,而Al2O3颗粒将发生粉碎性破裂。由于增强颗粒的断裂,它们将失去或部分失去承载能力,因而增加了周围基体的局部变形。8.3.3.1增强颗粒的断裂 实验表明对SiCP 或Al2O3颗粒增强型铝基复合材料,在简单拉伸作用下,增强颗粒会发生断裂,颗粒长细比及体积越大越容易断裂。,2023/5/7,28,由图8-9可以看出长细比越大的颗粒承受的力就越大,因此选取颗粒内最大主应力作为描述其断裂的控制量,为了反映体积大小对颗粒断裂的影响,这里假设增强物的强度可由Weibull分布来描述,即,其中0是颗粒断裂所需的最小应力值,是增强物内最大主应力,P(V,)是在应力作用下
14、体积为V 的颗粒断裂几率,V0,0,u 和m 为材料常数,由实验确定。为了使计算简化,这里假设增强物的长细比一致,但其体积可以变化,该变化用等效直径D 表示,即(a、b 分别为椭球的长短半轴)。式(8-13)可写成,2023/5/7,29,其中:,由于在金属基复合材料的生产过程中,颗粒大小不可能完全一致。因此,假设其尺寸分布可用正态分布来描述,(8-15),2023/5/7,30,其中:表示颗粒平均尺寸,刻画颗粒大小的分散程度。增强物的断裂将会把原来承担的力转嫁到周围的基体和未断裂的颗粒上,为了刻化这一特点,将对断裂颗粒的刚度进行折算,即把断裂的颗粒看作另一种横向同性材料,其横向ET,T与原颗
15、粒一致,其余置为零。有了上述处理,下面将计算在简单拉伸作用下所对应的颗粒断裂的体积百分比fb及基体的塑性变形eq,如果这时未断裂颗粒内最大主应力记为,它与复合材料的微观结构,外载及断裂颗粒的体积百分比fb 有关。这时断裂颗粒的体积百分比可表示为,(8-16),2023/5/7,31,由于计算需知道fb,因此上述是一个耦合方程。为了建立施加外载与基体的塑性应变eq 及所对应颗粒断裂体积百分比fb 的关系,采取如下迭代方法:给定一基体等效塑性变形eq,另外给一个fb 的尝试值,这样通过前面细观力学的方法,可确定所对应的宏观施加外力值及未断颗粒内部的最大主应力,利用式(8-16)可确定一个断裂颗粒体
16、积百分比的计算值fb,通过调整fb的值,直至|fb-fb|,为某一精度要求。这样得到的fb 即为在基体等效塑性变形eq时所对应的颗粒断裂的百分比,同时所对应的宏观施加外力,及此时复合材料的割线模量也可得到。通过改变eq 即可建立复合材料含损伤演化的应力应变关系。有了断裂颗粒的体积百分比与外载的关系,这样所引起的复合材料弹性模量的降低也可以很容易得到。,2023/5/7,32,下面将以SiCP/Al-2618(T651)为例研究颗粒断裂对复合材料宏观性能的影响。该材料基体和SiCP 颗粒的弹性常数已在前面给出,基体的屈服极限及硬化参数为t=418MPa,h=409MPa,n=1。SiCP颗粒总体
17、积百分比为f=15%,SiCP颗粒Weibull强度分布中的主要参数为0=922MPa,p1=1226MPa,m=1,A=1.310-4/m3。SiCP颗粒的长细比为a=1.8,对该种复合材料含损伤演化的宏观性能进行计算。图8-10给出复合材料应力应变的预测曲线和实验曲线。可以看出如不考虑SiCP的断裂,预测值高于实验值。考虑了损伤的预测值更接近实验曲线。图8-11给出复合材料模量的降低,及SiCP颗粒断裂的体积百分比随应变变化的计算曲线及实验曲线,可以看出,计算值与测量值吻合较好,尤其是模量的变化。,2023/5/7,33,图8-9 增强颗粒承受载荷随长细比的变化,图8-11 复合材料模量及
18、颗粒断裂体积百分比 图8-12 增强颗粒的尺寸分布 随应变变化的计算曲线(实线)与实验 1=15m,=5m;2=15m,=0.5m;曲线(虚线)比较 3=25m,=0.5m,图8-10 复合材料应力-应变曲线 1-无损伤计算曲线;2-有损伤计算曲线;3-实验曲线,2023/5/7,34,从上述与实验的比较可以看出,模型能够反映SiCP/Al 复合材料基体的塑性变形和颗粒断裂随外载的演化。下面将利用该模型分析SiCP颗粒的尺寸大小及分散程度对复合材料宏观性能的影响。各种材料参数与前面相同。图8-12 给出了SiCP颗粒尺寸大小的三种分布。图8-13、8-14给出了对应复合材料的应力应变曲线及模量
19、变化的预测曲线。可以看出当SiCP颗粒平均尺寸相对较小时,如这里=15m,颗粒的分散程度对复合材料的应力应变曲线及模量的降低影响不大,但SiCP颗粒的平均尺寸对复合材料的损伤和宏观性能有较大的影响。从图8-14可以看出颗粒平均尺寸大(=25m)的复合材料随变形模量降低也较大。即大量的SiCP颗粒在变形过程中发生了断裂。此时复合材料的应力应变曲线也比其它两种分布情况低。,2023/5/7,35,图8-13 颗粒的尺寸分布对复合材料应力应变的影响(实线-无损伤),图8-14 颗粒的尺寸分布对复合材料模量变化的影响,2023/5/7,36,8.4 脆性纤维增强金属基复合材料失效特点 在一般情况下,用
20、脆性的、性能离散的纤维增强的复合材料的失效过程可以分为两个阶段。在第一阶段个别纤维断裂、损伤统计累积、材料的刚性不断下降;在第二阶段材料整体失效。整个失效过程的发展决定于:增强物与基体的弹性性能和塑性性能的相互关系以及他们的体积分数,增强物与基体的强度性能的统计偏差和结构几何参数的偏差,例如纤维强度的离散性和纤维排列的不均匀性。这就可将失效过程的研究分为两部分。第一部分为“机械”部分,它研究纤维和基体的力学相互作用,即在形变和某些纤维断裂时应力在各组之间的再分配过程。第二部分为“概率”部分,它从概率角度出发研究损伤的累积过程和材料整体失效的可能性。,2023/5/7,37,图8-15中示出了初
21、始断裂的纤维、由于过载以及初始断裂的应力波的作用而断裂的纤维。图8-16是铝硼复合材料的断口模型。,图8-16 不同界面结合强度的铝硼复合材料的断口模型(a)界面结合弱,(b)界面结合适中,(c)界面结合强,生成连续的大量金属间化合物层,图8-15铝硼复合材料中纤维的断裂情况1初始断裂,2局部过载造成的断裂,3初始断裂产生的应力波造成的断裂,2023/5/7,38,图8-17 铝碳复合材料的断口模型与物理化学作用的关系(a)作用弱,(b)作用适中,(c)作用强,2023/5/7,39,8.5 复合材料失效过程的发展阶段 复合材料的失效过程分为两个阶段:损伤累积阶段和向完全失效的过渡阶段。8.5
22、.1 研究复合材料失效过程的概率方法 线性断裂力学是分析脆性纤维增强塑性基体复合材料强度性能的主要方向之一,当复合材料上作用的外应力为,(8-17),时,个别纤维的断裂将不造成材料灾难性的失效。式中mb和mb分别为基体的强度和应变的极限值,n为束中纤维的数量。,2023/5/7,40,8.5.2 损伤统计累积时复合材料的承载能力 将复合材料看成是由长度为lc的层组成的。损伤累积过程的基本假设是纤维的断裂均匀地发生于材料的全体积中,也即材料各个截面的弱化基本一致。如果纤维的断裂只在截面中累积,则意味着向材料完全失效的过渡。在此假设的基础上可将某一层(因而整个复合材料)承受的轴向载荷看成由无缺陷部
23、分承受的载荷,有缺陷部分承受的载荷以及由于形成缺陷、无缺陷部分承受的额外载荷组成:,(8-18),2023/5/7,41,式中Pc总载荷,w,d,0分别为无缺陷,有缺陷和过载部分的平均应力,Fc复合材料的截面积,Fw,Fd,Fu分别为无缺陷,有缺陷和过载部分的截面积。因此,当复合材料上作用的外应力为:,(8-19),有缺陷部分的截面积Fd与某一层中纤维的断裂数成正比,而FdFc等于某一层中断裂的纤维数与总纤维数之比。随着载荷的增加某层中断裂的纤维数也增加,用损伤累积函数W(f)表征随纤维中载菏增大、缺陷部分的相对截面积的增加,则,2023/5/7,42,(8-20),(8-21),(8-22)
24、,(8-23),无缺陷部分的相对截面积,超载部分的截面积也正比于层中断裂纤维的量,式中K0为系数。将式(8-20),(8-21)(8-22)代入式(8-19)得,式(8-23)表示应力分布,见图8-18。,2023/5/7,43,图8-18 应力分布,2023/5/7,44,可用混合率公式表示 d和0也可用混合率公式表示,不过应添加平均系数式中,系数Kof表征断裂纤维的端部承受的载荷系数Kom 表征有缺陷部分承受的载荷,(8-24),(8-25),(8-26),(8-27),2023/5/7,45,系数Kf表征断裂纤维邻近的纤维额外承受的载荷,(8-28),(8-29),系数Km表征基体额外承
25、受的载荷,上述各式中f0(z),f1(z),纤维长度上拉伸应力的分布函数;m0(z,r),m(z,r)有缺陷部分及其周围过载部分中基体的轴向应力分布函数;ra,r0有缺陷和过载部分的半径。式(8-23)中除W(f)外其他的各量都已知,下面将确定损伤累积函数W(f)。,2023/5/7,46,8.5.3 损伤累积函数和短纤维段的强度分布 在大量纤维的强度试验的基础上可以建立某一应力范围内纤维断裂的概率密度函数g(f)或概率函数G(f),如果纤维的长度为L,则它们表征此长度上缺陷的分布。但在复合材料中纤维的断裂可能不止一次,直到断成约为临界长度lc的小段。因此,在这临界长度上缺陷的分布对于复合材料
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 8第八章 金属基复合材料的损伤与失效文档资料 第八 金属 复合材料 损伤 失效 文档 资料
链接地址:https://www.31ppt.com/p-4682617.html