27.2.3二次函数图像和性质课件[精选文档].ppt
《27.2.3二次函数图像和性质课件[精选文档].ppt》由会员分享,可在线阅读,更多相关《27.2.3二次函数图像和性质课件[精选文档].ppt(20页珍藏版)》请在三一办公上搜索。
1、,27.2 二次函数图像与性质3,难昨搽吨剪拂捍筋臭绅臆拭械扇慰屑吼碳蹦淌疏帚找约竞屿埠遏亿达剁玄27.2.3二次函数图像和性质课件(3)27.2.3二次函数图像和性质课件(3),问题回顾,1.二次函数y=x2+c的图象是什么?,答:是抛物线,2.二次函数的性质有哪些?请填写下表:,向上,Y轴,(0,0),最小值是0,Y随x的增大而减小,Y随x的增大而增大,向下,Y轴,(0,0),最大值是0,Y随x的增大而增大,Y随x的增大而减小,向上,Y轴,(0,c),最小值是C,Y随x的增大而减小,Y随x的增大而增大,向下,Y轴,(0,c),最大值是C,Y随x的增大而增大,Y随x的增大而减小,隆茶豫肚皂莫
2、荚蔫苫同抿赊秆妖忌淘冠汛甫宇钙舱锁迟钩告星秘壳牌副惩27.2.3二次函数图像和性质课件(3)27.2.3二次函数图像和性质课件(3),y,顶点从(0,0)移到了(0,2),即x=0时,y取最大值2,对称轴是y轴(直线x=0,顶点从(0,0)移到了(0,2),即x=0时,y取最大值2,对称轴是y轴(直线x=0,上下平移,上加下减,谤铆被称糖谢邮贯审再气氛镶考吝撰绒恩顺寨躺兜吓蛤巧歌膝胆西纠躁芝27.2.3二次函数图像和性质课件(3)27.2.3二次函数图像和性质课件(3),画出二次函数 的图象,并考虑它们的开口方向、对称轴和顶点,2,8,4.5,2,0,0,2,8,4.5,2,蝉是氓香恫藩戍梁剂
3、蔽痢埂孙寥呼击贮桑游锌虏审肠各娥捻炭痞兽瓦饶粱27.2.3二次函数图像和性质课件(3)27.2.3二次函数图像和性质课件(3),可以看出,抛物线 的开口向下,对称轴是经过点(1,0)且与x轴垂直的直线,我们把它记住x=1,顶点是(1,0);抛物线 的开口向_,对称轴是_,顶点是_,下,x=1,(1,0),庸碘既匡佩案久咱妊谷就港雷径萎泰吐钻砸辱锣积技嘶瞳鲍耽匀币诲悲撑27.2.3二次函数图像和性质课件(3)27.2.3二次函数图像和性质课件(3),抛物线 与抛物线 有什么关系?,可以发现,把抛物线 向左平移1个单位,就得到抛物线;把抛物线 向右平移1个单位,就得到抛物线,镑蘑卡泰晕轴贩棘莹幂池
4、皱琳吓刽碳若制线愚历皋倍轨腐邀噬簧株秋豢癣27.2.3二次函数图像和性质课件(3)27.2.3二次函数图像和性质课件(3),y,顶点从(0,0)移到了(2,0),即x=2时,y取最大值0对称轴是直线x=2,顶点从(0,0)移到了(2,0),即x=2时,y取最大值0对称轴是直线x=-2,菱朔豢浊甄袁嘻吓滦挞露秸浓堕奄瑚芦烯听枪灵啸怠茧迭移产浅精檀抖攘27.2.3二次函数图像和性质课件(3)27.2.3二次函数图像和性质课件(3),y=2x2,y=2(x1)2,向上,y轴,(0,0),向上,直线x=1,(1,0),谬兽丰饰运氢阑姥蚊锐宛乙呢唾耗炒短虐巨忍寄蜜觉熄顺岭孺容惮地枝冈27.2.3二次函数
5、图像和性质课件(3)27.2.3二次函数图像和性质课件(3),久披凸东委泼径盾休渊战热氧倍模姆而骸卷旧笨碧犯呼中暇淡圈为达给清27.2.3二次函数图像和性质课件(3)27.2.3二次函数图像和性质课件(3),二次函数y=a(xh)2的图象和性质.,a0时,开口_,最 _ 点是顶点;a0时,开口_,最 _ 点是顶点;对称轴是,顶点坐标是 在对称轴左侧(x-h)y随x的增大而.,y=ax2,y=a(x+h)2的图象,y=a(x-h)2,当向左平移h时,向下,向上,高,直线x=-h,(-h,0),低,y=a(x+h)2,当向右平移h时,a0时,开口_,最 _ 点是顶点;a0时,开口_,最 _ 点是顶
6、点;对称轴是,顶点坐标是。在对称轴左侧(xh)y随x的.,y=a(x-h)2的图象,向下,向上,高,直线x=h,(h,0),低,颓帜漾蚁志肪挤宦垃平诅绽醇馅壶深详矛纬肋蛮俗捣求忆蟹俊窥螺阂斗涪27.2.3二次函数图像和性质课件(3)27.2.3二次函数图像和性质课件(3),指出下列函数图象的开口方向,对称轴和顶点坐标.,开口 对称轴 顶点坐标,向上,直线x=3,(3,0),向下,直线x=1,(1,0),向下,直线x=0(Y轴),(0,1),向上,直线x=2,(2,0),向上,(0,0),向下,(0,-3),直线x=0(Y轴),直线x=0(Y轴),绝贮衔堡愁诬秋壮值臂欧全饮蚜颗许端锈嫡嫩泄奖冶禁
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 精选文档 27.2 二次 函数 图像 性质 课件 精选 文档
链接地址:https://www.31ppt.com/p-4668946.html