专题一:求函数值域十六法.doc
《专题一:求函数值域十六法.doc》由会员分享,可在线阅读,更多相关《专题一:求函数值域十六法.doc(15页珍藏版)》请在三一办公上搜索。
1、求函数值域方法 求函数的值域或最值是高中数学基本问题之一,也是考试的热点和难点之一。遗憾的是教材中仅有少量求定义域的例题、习题,而求值域或最值的例题、习题则是少得屈指可数。原因可能是求函数的值域往往需要综合用到众多的知识内容,技巧性强,有很高的难度,因此求函数的值域或最值的方法需要我们在后续的学习中逐步强化。本文谈一些求函数值域的方法,仅作抛砖引玉吧。一、 基本知识1 定义:因变量y的取值范围叫做函数的值域(或函数值的集合)。2 函数值域常见的求解思路: 划归为几类常见函数,利用这些函数的图象和性质求解。 反解函数,将自变量x用函数y的代数式形式表示出来,利用定义域建立函数y的不等式,解不等式
2、即可获解。 可以从方程的角度理解函数的值域,如果我们将函数看作是关于自变量的方程,在值域中任取一个值,对应的自变量一定为方程在定义域中的一个解,即方程在定义域内有解;另一方面,若取某值,方程在定义域内有解,则一定为对应的函数值。从方程的角度讲,函数的值域即为使关于的方程在定义域内有解的得取值范围。 特别地,若函数可看成关于的一元二次方程,则可通过一元二次方程在函数定义域内有解的条件,利用判别式求出函数的值域。 可以用函数的单调性求值域。 其他。3 函数值域的求法(1)、直接法:从自变量的范围出发,推出的取值范围。或由函数的定义域结合图象,或直观观察,准确判断函数值域的方法。 例1:求函数的值域
3、。 例2:求函数的值域。 例3:求函数的值域。解:,函数的值域为。(2)、配方法:配方法式求“二次函数类”值域的基本方法。形如的函数的值域问题,均可使用配方法。例1:求函数()的值域。解:, ,函数()的值域为。(3)最值法:对于闭区间上的连续函数,利用函数的最大值、最小值求函数的值域的方法。 例1 求函数y=3-2x-x2 的值域。解:由3-2x-x20,解出定义域为-3,1。 函数y在-3,1内是连续的,在定义域内由3-2x-x2 的最大值为4,最小值为0。函数的值域是0,2例2:求函数,的值域。 例3:求函数的值域。 (4)、反函数法:利用函数和它的反函数的定义域与值域的互逆关系,通过求
4、反函数的定义域,得到原函数的值域。例1:求函数的值域。解:由解得,函数的值域为。(5)、分离常数法:分子、分母是一次函数得有理函数,可用分离常数法,此类问题一般也可以利用反函数法。小结:已知分式函数,如果在其自然定义域(代数式自身对变量的要求)内,值域为;如果是条件定义域(对自变量有附加条件),采用部分分式法将原函数化为,用复合函数法来求值域。例1:求函数的值域。解:,函数的值域为。(6)、换元法:运用代数代换,奖所给函数化成值域容易确定的另一函数,从而求得原函数的值域,形如(、均为常数,且)的函数常用此法求解。例1:求函数的值域。解:令(),则,当,即时,无最小值。函数的值域为。(7)、判别
5、式法:把函数转化成关于的二次方程;通过方程有实数根,判别式,从而求得原函数的值域,形如(、不同时为零)的函数的值域,常用此方法求解。例1:求函数的值域。解:由变形得,当时,此方程无解;当时,解得,又,函数的值域为(8)、函数的单调性法:确定函数在定义域(或某个定义域的子集)上的单调性,求出函数的值域。例1:求函数的值域。解:当增大时,随的增大而减少,随的增大而增大,函数在定义域上是增函数。,函数的值域为。例2求函数在区间上的值域。分析与解答:任取,且,则,因为,所以:,当时,则;当时,则;而当时,于是:函数在区间上的值域为。构造相关函数,利用函数的单调性求值域。例3:求函数的值域。分析与解答:
6、因为,而与在定义域内的单调性不一致。现构造相关函数,易知在定义域内单调增。,又,所以:,。(9)、基本不等式法利用基本不等式和是求函数值域的常用技巧之一, 利用此法求函数的值域, 要合理地添项和拆项, 添项和拆项的原则是要使最终的乘积结果中不含自变量, 同时, 利用此法时应注意取成立的条件. 例1 求函数的值域. 解答: , 当且仅当时成立. 故函数的值域为. 此法可以灵活运用, 对于分母为一次多项式的二次分式, 当然可以运用判别式法求得其值域, 但是若能变通地运用此法, 可以省去判别式法中介二次不等式的过程. 例2 求函数的值域. 解答: 此题可以利用判别式法求解, 这里考虑运用基本不等式法
7、求解此题, 此时关键是在分子中分解出项来, 可以一般的运用待定系数法完成这一工作, 办法是设: , (2)将上面等式的左边展开, 有: ,故而, . 解得, .从而原函数; )当时, , , 此时, 等号成立, 当且仅当. )当时, , , 此时有, 等号成立, 当且仅当. 综上, 原函数的值域为: . 不等式法利用基本不等式,求函数的最值,其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时需要用到拆项、添项和两边平方等技巧。 例3. 求函数的值域。解:原函数变形为:当且仅当即当时,等号成立故原函数的值域为: 例4. 求函数的值域。解: 当且仅当,即当时,等号成立。由可得
8、:故原函数的值域为:(10)、有界性法:利用某些函数有界性求得原函数的值域。例1:求函数的值域。解:由函数的解析式可以知道,函数的定义域为,对函数进行变形可得,(,),函数的值域为形如可解出Yr 范围,从而求出其值域或最值。例2求函数的值域解析:函数的有界性由得例3:求函数的值域。 例4:求函数的值域。 (11)、数型结合法:函数图像是掌握函数的重要手段,利用数形结合的方法,根据函数图像求得函数值域,是一种求值域的重要方法。当函数解析式具有某种明显的几何意义(如两点间距离,直线的斜率、截距等)或当一个函数的图象易于作出时,借助几何图形的直观性可求出其值域。例1:求函数的值域。解: ,的图像如图
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题 函数 值域 十六
链接地址:https://www.31ppt.com/p-4666408.html