中学数学基本能力培养.doc
《中学数学基本能力培养.doc》由会员分享,可在线阅读,更多相关《中学数学基本能力培养.doc(42页珍藏版)》请在三一办公上搜索。
1、91 运算能力的培养第9章 中学数学基本能力培养教学目的:通过本章的学习,使学生掌握在教学中如何培养三种能力,即如何培养学生的运算能力,思维能力和空间想象能力,并在此基础上如何进一步培养一般能力,如观察能力,理解能力,记忆能力和运用能力等。教学内容:1、运算能力的培养。2、空间想象能力的培养。3、分析和解决实际问题的能力培养。4、逻辑思维能力的培养。教学重、难点:三种能力的培养既是本章的重点又是难点。教学方法:讲授法教学过程:91 运算能力的培养911 什么是运算能力运算的意义不仅局限于通常的加、减、乘、除、乘方开方等代数运算,还包括初等函数的运算和求值,各种几何量的测量和计算,求数列与函数极
2、限以及微分、积分等分析运算,还有概率、统计的初步计算等特别要指出的是几何的平移、旋转、对称、伸缩等“变换”也可称为“几何运算”在一些高中数学教材和中等专业技术学校使用的数学课本中,还简单介绍了逻辑代数知识,“与”,“或”、“非”这是“逻辑运算”对于集合求其交集、并集及全集,是进行集合运算如果对于运算作上述广义的理解,那么我们就不会再片面地说运算只是算术和代数的事了因此,培养学生正确和迅速的运算能力是整个中学数学教学中的任务912 培养学生运算能力的基本途径怎样才能使学生具有正确迅速的运算能力呢?在小学、初中与高中这几个阶段中,都必须有计划有步骤地进行培养,由算术运算到代数运算;由代数运算到分析
3、运算、几何运算、集合运算、逻辑运算,由口算、笔算到表算、工具算等都要切实抓好.总之,一要学习,即学习与运算有关的知识;二要训练,即精心选择一部分习题,让学生独立完成下面谈一谈培养学生运算能力的基本途径1、牢固掌握基础知识,弄通算理、法则要使运算正确而又迅速就要牢固地掌握与运算有关的概念、公式法则以及变形化简等思维方法同时要多练习,常反复,形成熟练的技能技巧但也不能“死练”,在练之前,要使得学生懂得“算理”使其懂得“怎样算”,“为什么这样算”只有“计有据”,才能“算有准”如果教师只教给学生“怎样算”,而学生并不明白“为什么这样算”,“为什么这样算就正确”,那么学生的运算能力就不会始终保持其正确性
4、,也形成不了什么运算能力例1 讲异分母分数的加减时,如果只教给学生要先通分,变成同分母的分数之后,再按同分母的分数进行加减运算,而不讲清为什么要这样算,有的学生对运算的方法是记不牢的,时间一长,往往会遗忘,甚至会出现之类的笑话因此,教师必须在学生学习通分算法之初,就教学生“算理”,让学生清楚地懂得:如果两个分数分母不同,分数的单位就不同,每份的大小也就不同,而单位不同的分数是不能直接相加减的只有经过通分之后,它们的分母相同了,即分数的单位相同了,每份的大小是一样的,从而就可以直接进行加减运算了例2 如化简,则需要灵活运用和角三角函数公式来进行推理,计算如下: 原式这里,三角函数公式的应用,恒等
5、变形的使用都给培养正确的、迅速的运算能力提供了前提例3 如解方程,首先应该知道方程的解域是,再进行同解变形得从而有(x-1)2100,解此方程得x11或x= -9但要注意,如果把原方程变为:由于未知数取值范围缩小为x1,于是产生减根显见这种解法是错的在例2和例3的运算过程中,每步推导都是依理进行的事实上,在培养运算能力的过程中,逻辑思维能力的培养也在其中了例4 实系数方程的三根在复平面上构成正三角形的三个顶点,则m的值的是:(A)1; (B)0; (C)1; (D)2 答案( )解 因为三点不可能都在实数轴上,所以方程至少有一个虚根,又因为实系数为一元三次方程,故必有一个实根设三根为,a+bi
6、,a-bi(、a、bR,0)它们的对应点分别为A(,0),B(a,b),C(a,-b),其中A在实轴上由韦达定理,可得 +(a+bi)(a-bi)0所以:-2a故A与B、C位于y轴两侧设B、C连线交x轴于D点,则有|OD|=|a|OA|-2a|2|a|所以O为ABC的中心|OB|2|a|,a2+b24a2 ba所以三根为-2|a|,a(1+i),a(1-i)又因为(-2a)a(1+i)a(1-i)-1解得a=,则-2a-1将-1代入原方程,得(-1)3m(-1)10,故m=0,故选择(B)本题推理丝丝入扣,逻辑严谨各步判断有根有据,然而各步判断均和计算结果直接相关由此可见运算能力的培养有助于推
7、理判断能力的培养除此,运算能力的培养在运算型的证明题中也能得到较好的体现总而言之,在运算过程中,“言之有据”是应该遵循的重要原则之一下面再举一例,以说明在逻辑运算中,也必须弄通算理,才能使运算达到正确迅速例5 某年级先后举行数、理、化三种竞赛,学生中至少参加一科的:数学201人,物理177人,化学163人;参加两科的:数学、物理141人,数学、化学114人,物理、化学95人;三科都参加的87人问参加竞赛的学生总数是多少?ACABBCABCBAC图9-1解 这是一道涉及到逻辑运算的运算题如学生弄不通算理,如学生弄不通算理,不懂逻辑运算法则,还照以往代数中的运算一样去运算,即将各类竞赛者一加求和了
8、事,那就出现错误了所以说,一些与运算相关的新的数学概念、法则、公式的引入都需要加以格外留意,以免在运算过程中,因算理不通,铸成谬误对本题可作如下解答:设A、B、C分别表示参加数学、物理化学每一科竞赛学生的集合(如图9-1),并且以n(S)表示有限集合S的元素个数则有n(ABC)=n(A)+n(B)+n(C)-n(AB)-n(AC)-n(BC)+n(ABC)=201+177+163-141-114-95+87=2782、提高记忆能力,加强运算基本功训练培养学生运算能力,还要提高学生的记忆能力,牢固掌握一些常用的数据、常用的公式和法则尤其要加强运算基本功训练,籍以形成熟练的技能技巧(1)一般来说,
9、在小学阶段,作为运算的基本功主要是:i)熟练掌握整数、小数、分数的四则运算;ii)20以内的口算加减法与表内乘法、相应的除法,要达到“直呼”的程度:熟悉分数、小数互化运算,熟悉一些分数互化的数值例如:、等等(2)在初中阶段,作为运算的基本功主要是:i)熟练掌握有理数的四则运算和有理指数、常用对数、锐角三角函数的运算,特别还要加强整式、分式与根式的运算训练ii)要熟记一些重要数据,讲究记忆方法和规律,最好能达到“直呼”的程度:a、多位数与一位数相乘,直接得积;b、120的平方数,110的立方数c、将被开方数化为质因数乘积求方根;d、特殊角的三角函数值;角度制与弧度制互换e、乘法公式(3)在高中阶
10、段,要通过复习以巩固上述初等运算的能力要学习一些初等函数的恒等变形;学习行列式和复数的运算;学习极限与微积分运算;还要学会集合的运算、逻辑运算这阶段的运算基本功主要是:i)熟练掌握指数、对数式与三角函数式的恒等变形,初步掌握极限与微积分运算ii)熟记基本公式、重要的极限等、以提高计算速度例如:,(且); ; ;微积分基本公式等为了使学生练习基本功,一要理解运算所依据的道理;二要记住常用的公式、法则;三要通过练习才能落实到学生身上下面选一组指数、对数的基础练习和一组心算练习题,供参考i)化简计算:;ii)比较大小,; ,;,; ,;,; ,iii)求函数的定义域; ; iv)求值:已知lgx6,
11、lgy3,求的值已知lg20.3010,lg30.4771,求的值已知ABC中,C90,三边长a、b、c,求v)解方程:; 心算练习题:a为实数,a2永远为正数,对吗?代数式2+x2的值,最小可能是几?代数式1y2的值,最大可能是几?的值能否大于1?为什么?下列哪些式子相等,哪些不相等;a、6264与68; b、(24)3与212;c、(235)2与223252; d、(-714)4与-74144“a加b平方”与“a与b和的平方”意思一样吗?分别写出表达式来若3xx,x的值会怎样?想出一个数c,使c2c而2cc方程与是否同解?为什么方程组无解?练好运算的基本功,并使运算具有一定的速度,是培养学
12、生正确迅速的运算能力不可缺少的3、加强运算练习,培养学生的运算能力我们知道任何能力都是可以有计划、有目的地训练出来的,提高学生运算能力必须加强练习,严格训练加强练习就要按规律进行多练、巧练、反复练题目由浅到深,基本题、引伸题、创新题依次出现,这样不但可训练学生的运算技能技巧,而且可培养学生的运算能力严格训练就要做到高质量、高效率,即学生练习要做到正确、迅速、合理从某种意义上讲,运算能力的培养实际上就是对合理进行计算的能力培养而这种合理性的发现,“简捷算法”的寻得,首先就需要有很好的观察力和对基础知识的良好掌握例如计算有观察习惯的人绝不一见题就用乘法分配律展开,而是对、都含有具有“好奇心”,并接
13、着会想从第一个因式中提取公因式,从第二个因式中提取公因式,看它们会变成什么样子?即原式至此,就容易进一步想到用乘法公式作进一步的化简了由于每个人在观察时,抓住问题的特点不同,或者运用的知识不同,对同一个问题可能得到几种不同的解法,这就是“一题多解”,“多解”之中一般总有较为简捷的解法经常引导学生重视“简捷算法”与“一题多解”的训练,可以培养学生思维的敏捷性和灵活性只有思想上“迅速”了,行动上才能“迅速”起来;只有解法上“合理”了,即在应有的水平上达到了“最佳选择”,才能获得最快的速度当然“简捷算法”与“一题多解”的训练必须紧密结合教学内容进行;必须从小学到中学,一贯重视这种能力的培养,循序渐进
14、地提高要求,才能使学生学到运算技能和技巧,得到系统的巩固和提高,从而形成一种运算能力,进而去探索未知领域,获得新知识当然这种未知领域对于学生来说是先前未曾感知过的,而对教师来说是可能感知过的在低年级,一般宜进行“简捷运算”的训练因为学生年龄尚小,所学知识也不多,他们往往会为获得一种“简捷运算”而欢欣鼓舞,可以说简捷运算容易引起学生的学习兴趣当然在高年级也要寻求“简捷算法”,即使搞“一题多解”训练,最后也要比较,看哪种解法最为简捷例1 化简分析 这是一道根指数,分数指数的综合运算题,首先要确定统一成哪种指数形式进行运算较为简捷原式例2 已知直角三角形两直角边的长分别为5cm和12cm,求斜边上的
15、高解 若用射影定理计算高就繁了所以先求斜边长,得,再由面积相等求出斜边上的高为例3 已知,求的值分析 若用直接代入求值就太繁了所以,我们改变一个角度,由得,所以,所以,把它代入原式,则问题就解决了解 由,得,所以,所以 原式 以上三例都显示了简捷运算的优点但这种简捷运算的获得,是经过认真分析,进行选择的结果,这个过程,一题多解的思想已包含在其中了采用多样化方法解题,不但可以发展学生的思维能力与运算能力,而且还可以提高学生的学习积极性,培养创造精神为了提倡“一题多解”,在教学中教师要经常进行“一题多解”的典型示范,同时引导学生判断哪种方法较简捷,从而进行选择,加强解题的预见性,做到解题时思维敏捷
16、,避繁就简,达到正确迅速的要求对于学生有创见的解法,也要善于引导,爱护他们独立思考的积极性,同时帮助他们分析具体错误的症结例4 计算解原式;原式;原式;原式 显然解法是最简捷的,但解法也很巧妙例5 已知ax4+bx3+1能被(x-1)2整除,求a、b之值解法一用竖式除法,即得余式为 (3b+4a)x+(1-2b-3a)0解得 a=3,b=-4解法二用比较系数法令 将等号右边展开,两边比较系数,解方程组得: a=3,b-4,p3,q2,r1,例4、例5 在完成运算之后可知有较简捷算法存在,而例1、例2、例3是在未完成运算之前就作出合理选择,从而采用了简捷算法,实质上,前3例也进行了“一题多解”的
17、思维过程,只不过表述成文字的是一种简捷的算法 运算能力形成的重要性,不仅仅在于它能够从事一系列的运算,甚至具有一定的技能技巧,而更重要地在于它能帮助人们去开拓新知识领域 例6 计算 123100 这是历史上很有名的一道题据说高斯在六岁的时候,就以老师不敢相信的速度得出了正确的答案5050高斯是如何进行运算的呢?我们可以推测,他可能是观察之后,发现了11002995051,然后利用加法的交换律、结合律及乘法的定义进行运算的,即123100(1100)+(299)+(5051)101101101101505050所用知识是有限的,是人所共知的,然而他将这些知识选择,组合的方法是别有洞天的再朝前走一
18、步,自然数列求和公式不就应运而生了吗?例7 求自然数倒数平方的级数和:解 这是数学家伯努利(Bernoulli,16541705)的一个级数求和难题,伯努利是17世纪杰出的数学家,他是古典概率论的创始人,对古典微积分学以及级数求和等问题都有贡献,但是他却没有办法算出自然数倒数平方的级数和于是他公开征解,可惜直到他逝世时还未见到有人解出此难题这个难题过了数十年之后才由欧拉解答出来在这里欧拉巧妙地利用了类比推理完成了一项非常有趣的发现,给出了伯努利所未能找到的级数和28392 空间想象能力的培养首先,对于只含偶数次项的2n次代数方程,()假设有2n个互不相同的根:则得 把乘积展开出来,易见x2项的
19、系数为:以上所述为一般代数方程式论中的初等知识欧拉又考虑了三角方程:他把它看成是只含有偶次项的无穷次代数方程由于此方程含有相异根,于是欧拉采用了类比法,即仿照上述2n次多项式分解成乘积的形式,把这里出现的所谓无限次多项式也照样分解成因式乘积形式:这便是著名的“欧拉乘积公式”这样一来,再把右边的乘积展开,便发现x2项的系数是:即奇迹出现了在数学中经常给学生出一些创新题去运算,对学生的运算能力培养是十分有益的当然这些创新题应是学生力所能及的,那种一提“创造”就认为是让学生解答数学家所未能解答的问题的态度,显然是不可取的92 空间想象能力的培养921 什么是空间想象能力想象是一种特殊的思维活动,即在
20、头脑中表象出某种未曾感知的东西,或者创造某种未曾感知过的物体和现象的形象,或者专门产生某些新事物的概念空间想象不应只局限于三维空间如果我们认为空间想象乃是全部数学中的形象思维,它就和逻辑思维相辅相成了通过逻辑思维,由具体到抽象,又通过空间想象,由抽象到具体,波浪式地发展着实际上,在平面几何中,特别是在平面解析几何中,时常要想象图象的运动在代数和三角中,空间想象也扮演着重要的角色例如由函数的图像,便易于掌握函数的性质代数和分析中的许多概念,如果明确了它们的几何解释,就能使本来很抽象的概念变得生动、直观、形象起来,例如导数和定积分概念就是这样,特别是复数的几何意义的获得,对复数的研究更起了重大的作
21、用总之,培养学生的空间想象能力应是整个中学数学教学的任务其中立体几何教学在培养学生的空间想象能力方面所起到的特殊作用是明显的空间想象能力的培养应当包括哪些要求?一般认为大体上包括下列三个方面的要求:1、对于客观存在的空间形式,能在头脑中反映出正确的形象来,即形成空间概念2、能将空间形式,按照统一规定,绘成平面图形,反之,能从已知的平面图形想象出它所表达的空间形式3、不但能进行逻辑思维,而且能进行形象思维,也就是说能运用图形的几何直觉去研究某些问题922 培养学生空间想象能力的基本途径如同培养学生的运算能力一样,培养学生的空间想象能力也需要认真学习,牢固掌握基础知识,要会绘图会看图,还要进行一系
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中学数学 基本 能力 培养
链接地址:https://www.31ppt.com/p-4666341.html