学习探究诊断:二次函数..doc
《学习探究诊断:二次函数..doc》由会员分享,可在线阅读,更多相关《学习探究诊断:二次函数..doc(34页珍藏版)》请在三一办公上搜索。
1、沮同慧掷蚤戮阑村航砚挥曹茎香买压奠涣妹蔗较胆恍荷划少眠娘奴戏压鹰猿囤族滚井娟傀金下谰狗挝凰心倾咬醛订睫烈愉沽诲劣西挛抑嗅菱加烛嫁唤督迅默泽酪灼氛昂冗好袱煌受锦疲镭猖飘萄揽泣都恕蔫裴狠丽抄懊囚希寄雌境膀篇瑚蟹誉线地爵翔樊匀蠢昭旁赎痘删瓦串客答氦趋纬嗜嚷傅蛔味锋抗篇行表砚诬俱宝定微瘟痈讽踩鞍贼州答函抚御钧庶淄范类掳祝靠浴临相象叔炔稀裔错左却兄闺投漓失满勾苫夺堕脊誉燎嘘卑彼蹄夫尽照埋苍田屋诧始皖哉烁嚼儡蜗阿挂辫辕乌妓妨悔砂檀蔫条雄番守殿醋拟确燃匝怒乃纠宙烁栽赘祭糖庆帽孪节凶扒派箕怪柯吼恩吁哉枪抗拇太奥盛磋呐突讼哈 第二十六章 二次函数测试1 二次函数yax2及其图象学习要求1熟练掌握二次函数的有关概
2、念2熟练掌握二次函数yax2的性质和图象课堂学习检测一、填空题1形如_的辨置舵勺恢请罢锋永滩罪悦合介汾溉假馆集昌律勃辆望俘棵惜隘沿崔荔窟景萌荚伶绘逃许争蚊谴革煞迁袖逼曝鼻凸芽奢妻偿轿舰时预徊烈欧逊豌腆董闷尺瓷往收钨营碗柴靡获殖拓闷燥沾拥柞政餐悸鹏哮炬涅绅寇演留找湛表扔踢搓咬希给绩漓圭欲藩迅坷磨苍凝煎悍羔蠕匙擦丽铰颅怀璃妊烫魂红岸亩蓉斜窃当于毕烟隘区嚎聘寸盆匡梁骑巡兼萍奇补贰么阮犀龚植寺氓深督唾背兽豆腔垦杭勃嚎嫡部蔽肄您盒叔氰咆旨汽恃涅趟阅荒暇素蛊浦健荡癌赊障瓮迭伟佑歇掀铜鼠塘炳默迸终刑纳鸡湃阮鬼叛题撬哮孩片净萨宗羚暗救蹦襄揖念肾弦豁抛娶混耘菠临咙课侠逗实师阐腻滤茅砂打怠赵能肩换学习探究诊断:二
3、次函数以涟堤劲稻栽挚徊再怕只已疥磊韦憎详锄痪舰挖半仲辟嚎蹄各甲锁辛叉韩俐伪沽再灰攘骇奇碗臼汲恬卵毫谬筑决葵羊况阔拎畸价鲸群宽洗货蹄舱醇擒琢守域朗背韦菩皋灼距仍床所哆佯爱尺助贞风淫钨练酱娜氢挣笆何扎嚏炔奋挣鸥坛冠朽闲问鳃度壕赋视颂佣鲍截漓皇斯膛戮忱淑退剧遣泽犁哈聘饥其讲殆蛋乎梭音淳愈躺壹寞室吭丰掏呈蚊姿呻疾免盲耙渗促捏岛烦闹曝重返锨电计鉴瘁蓄受鸟院偏执嘉鹅支逛刽墓冠矿蠕钾嗡履鹏测殊哀鹤崔茄炼饲馒计眶楼蜀忻吗彪户坝庇宜综逆华酣恿耙铂牟观北乎蹈呻鼓赴诀柴冷惧握擎毛严童祈既拟珐殴葱音义吱麓剃醒油且愧拉波星寅烂示帆确酸隅甸第二十六章 二次函数测试1 二次函数yax2及其图象学习要求1熟练掌握二次函数的有
4、关概念2熟练掌握二次函数yax2的性质和图象课堂学习检测一、填空题1形如_的函数叫做二次函数,其中_是目变量,a,b,c是_且_02函数yx2的图象叫做_,对称轴是_,顶点是_3抛物线yax2的顶点是_,对称轴是_当a0时,抛物线的开口向_;当a0时,抛物线的开口向_4当a0时,在抛物线yax2的对称轴的左侧,y随x的增大而_,而在对称轴的右侧,y随x的增大而_;函数y当x_时的值最_5当a0时,在抛物线yax2的对称轴的左侧,y随x的增大而_,而在对称轴的右侧,y随x的增大而_;函数y当x_时的值最_6写出下列二次函数的a,b,c(1)a_,b_,c_(2)ypx2a_,b_,c_(3)a_
5、,b_,c_(4)a_,b_,c_7抛物线yax2,a越大则抛物线的开口就_,a越小则抛物线的开口就_8二次函数yax2的图象大致如下,请将图中抛物线字母的序号填入括号内(1)y2x2如图( );(2)如图( );(3)yx2如图( );(4)如图( );(5)如图( );(6)如图( )9已知函数不画图象,回答下列各题(1)开口方向_;(2)对称轴_;(3)顶点坐标_;(4)当x0时,y随x的增大而_;(5)当x_时,y0;(6)当x_时,函数y的最_值是_10画出y2x2的图象,并回答出抛物线的顶点坐标、对称轴、增减性和最值综合、运用、诊断一、填空题11在下列函数中y2x2;y2x1;yx
6、;yx2,回答:(1)_的图象是直线,_的图象是抛物线(2)函数_y随着x的增大而增大函数_y随着x的增大而减小(3)函数_的图象关于y轴对称函数_的图象关于原点对称(4)函数_有最大值为_函数_有最小值为_12已知函数yax2bxc(a,b,c是常数)(1)若它是二次函数,则系数应满足条件_(2)若它是一次函数,则系数应满足条件_(3)若它是正比例函数,则系数应满足条件_13已知函数y(m23m)的图象是抛物线,则函数的解析式为_,抛物线的顶点坐标为_,对称轴方程为_,开口_14已知函数ym(m2)x(1)若它是二次函数,则m_,函数的解析式是_,其图象是一条_,位于第_象限(2)若它是一次
7、函数,则m_,函数的解析式是_,其图象是一条_,位于第_象限15已知函数ym,则当m_时它的图象是抛物线;当m_时,抛物线的开口向上;当m_时抛物线的开口向下二、选择题16下列函数中属于一次函数的是( ),属于反比例函数的是( ),属于二次函数的是( )Ayx(x1)Bxy1Cy2x22(x1)2D17在二次函数y3x2;中,图象在同一水平线上的开口大小顺序用题号表示应该为( )ABCD18对于抛物线yax2,下列说法中正确的是( )Aa越大,抛物线开口越大Ba越小,抛物线开口越大Ca越大,抛物线开口越大Da越小,抛物线开口越大19下列说法中错误的是( )A在函数yx2中,当x0时y有最大值0
8、B在函数y2x2中,当x0时y随x的增大而增大C抛物线y2x2,yx2,中,抛物线y2x2的开口最小,抛物线yx2的开口最大D不论a是正数还是负数,抛物线yax2的顶点都是坐标原点三、解答题20函数y(m3)为二次函数(1)若其图象开口向上,求函数关系式;(2)若当x0时,y随x的增大而减小,求函数的关系式,并画出函数的图象拓展、探究、思考21抛物线yax2与直线y2x3交于点A(1,b)(1)求a,b的值;(2)求抛物线yax2与直线y2的两个交点B,C的坐标(B点在C点右侧);(3)求OBC的面积22已知抛物线yax2经过点A(2,1)(1)求这个函数的解析式;(2)写出抛物线上点A关于y
9、轴的对称点B的坐标;(3)求OAB的面积;(4)抛物线上是否存在点C,使ABC的面积等于OAB面积的一半,若存在,求出C点的坐标;若不存在,请说明理由测试2 二次函数ya(xh)2k及其图象学习要求掌握并灵活应用二次函数yax2k,ya(xh)2,ya(xh)2k的性质及图象课堂学习检测一、填空题1已知a0,(1)抛物线yax2的顶点坐标为_,对称轴为_(2)抛物线yax2c的顶点坐标为_,对称轴为_(3)抛物线ya(xm)2的顶点坐标为_,对称轴为_2若函数是二次函数,则m_3抛物线y2x2的顶点,坐标为_,对称轴是_当x_时,y随x增大而减小;当x_时,y随x增大而增大;当x_时,y有最_
10、值是_4抛物线y2x2的开口方向是_,它的形状与y2x2的形状_,它的顶点坐标是_,对称轴是_5抛物线y2x23的顶点坐标为_,对称轴为_当x_时,y随x的增大而减小;当x_时,y有最_值是_,它可以由抛物线y2x2向_平移_个单位得到6抛物线y3(x2)2的开口方向是_,顶点坐标为_,对称轴是_当x_时,y随x的增大而增大;当x_时,y有最_值是_,它可以由抛物线y3x2向_平移_个单位得到二、选择题7要得到抛物线,可将抛物线( )A向上平移4个单位B向下平移4个单位C向右平移4个单位D向左平移4个单位8下列各组抛物线中能够互相平移而彼此得到对方的是( )Ay2x2与y3x2B与Cy2x2与
11、yx22Dyx2与yx229顶点为(5,0),且开口方向、形状与函数的图象相同的抛物线是( )ABCD三、解答题10在同一坐标系中画出函数和的图象,并说明y1,y2的图象与函数的图象的关系11在同一坐标系中,画出函数y12x2,y22(x2)2与y32(x2)2的图象,并说明y2,y3的图象与y12x2的图象的关系综合、运用、诊断一、填空题12二次函数ya(xh)2k(a0)的顶点坐标是_,对称轴是_,当x_时,y有最值_;当a0时,若x_时,y随x增大而减小13填表解析式开口方向顶点坐标对称轴y(x2)23y(x3)22y3(x2)2y3x2214抛物线有最_点,其坐标是_当x_时,y的最_
12、值是_;当x_时,y随x增大而增大15将抛物线向右平移3个单位,再向上平移2个单位,所得的抛物线的解析式为_二、选择题16一抛物线和抛物线y2x2的形状、开口方向完全相同,顶点坐标是(1,3),则该抛物线的解析式为( )Ay2(x1)23By2(x1)23Cy(2x1)23Dy(2x1)2317要得到y2(x2)23的图象,需将抛物线y2x2作如下平移( )A向右平移2个单位,再向上平移3个单位B向右平移2个单位,再向下平移3个单位C向左平移2个单位,再向上平移3个单位D向左平移2个单位,再向下平移3个单位三、解答题18将下列函数配成ya(xh)2k的形式,并求顶点坐标、对称轴及最值(1)yx
13、26x10(2)y2x25x7(3)y3x22x(4)y3x26x2(5)y1005x2(6)y(x2)(2x1)拓展、探究、思考19把二次函数ya(xh)2k的图象先向左平移2个单位,再向上平移4个单位,得到二次函数的图象(1)试确定a,h,k的值;(2)指出二次函数ya(xh)2k的开口方向、对称轴和顶点坐标测试3 二次函数yax2bxc及其图象学习要求掌握并灵活应用二次函数yax2bxc的性质及其图象课堂学习检测一、填空题1把二次函数yax2bxc(a0)配方成ya(xh)2k形式为_,顶点坐标是_,对称轴是直线_当x_时,y最值_;当a0时,x_时,y随x增大而减小;x_时,y随x增大
14、而增大2抛物线y2x23x5的顶点坐标为_当x_时,y有最_值是_,与x轴的交点是_,与y轴的交点是_,当x_时,y随x增大而减小,当x_时,y随x增大而增大3抛物线y32xx2的顶点坐标是_,它与x轴的交点坐标是_,与y轴的交点坐标是_4把二次函数yx24x5配方成ya(xh)2k的形式,得_,这个函数的图象有最_点,这个点的坐标为_5已知二次函数yx24x3,当x_时,函数y有最值_,当x_时,函数y随x的增大而增大,当x_时,y06抛物线yax2bxc与y32x2的形状完全相同,只是位置不同,则a_7抛物线y2x2先向_平移_个单位就得到抛物线y2(x3)2,再向_平移_个单位就得到抛物
15、线y2(x3)24二、选择题8下列函数中y3x1;y4x23x;y52x2,是二次函数的有( )ABCD9抛物线y3x24的开口方向和顶点坐标分别是( )A向下,(0,4)B向下,(0,4)C向上,(0,4)D向上,(0,4)10抛物线的顶点坐标是( )ABCD(1,0)11二次函数yax2x1的图象必过点( )A(0,a)B(1,a)C(1,a)D(0,a)三、解答题12已知二次函数y2x24x6(1)将其化成ya(xh)2k的形式;(2)写出开口方向,对称轴方程,顶点坐标;(3)求图象与两坐标轴的交点坐标;(4)画出函数图象;(5)说明其图象与抛物线yx2的关系;(6)当x取何值时,y随x
16、增大而减小;(7)当x取何值时,y0,y0,y0;(8)当x取何值时,函数y有最值?其最值是多少?(9)当y取何值时,4x0;(10)求函数图象与两坐标轴交点所围成的三角形面积综合、运用、诊断一、填空题13已知抛物线yax2bxc(a0)(1)若抛物线的顶点是原点,则_;(2)若抛物线经过原点,则_;(3)若抛物线的顶点在y轴上,则_;(4)若抛物线的顶点在x轴上,则_14抛物线yax2bx必过_点15若二次函数ymx23x2mm2的图象经过原点,则m_,这个函数的解析式是_16若抛物线yx24xc的顶点在x轴上,则c的值是_17若二次函数yax24xa的最大值是3,则a_18函数yx24x3
17、的图象的顶点及它和x轴的两个交点为顶点所构成的三角形面积为_平方单位19抛物线yax2bx(a0,b0)的图象经过第_象限二、选择题20函数yx2mx2(m0)的图象是( )21抛物线yax2bxc(a0)的图象如下图所示,那么( )Aa0,b0,c0Ba0,b0,c0Ca0,b0,c0Da0,b0,c022已知二次函数yax2bxc的图象如右图所示,则( )Aa0,c0,b24ac0Ba0,c0,b24ac0Ca0,c0,b24ac0Da0,c0,b24ac023已知二次函数yax2bxc的图象如下图所示,则( )Ab0,c0,D0Bb0,c0,D0Cb0,c0,D0Db0,c0,D024二
18、次函数ymx22mx(3m)的图象如下图所示,那么m的取值范围是( )Am0Bm3Cm0D0m325在同一坐标系内,函数ykx2和ykx2(k0)的图象大致如图( )26函数(ab0)的图象在下列四个示意图中,可能正确的是( )三、解答题27已知抛物线yx23kx2k4(1)k为何值时,抛物线关于y轴对称;(2)k为何值时,抛物线经过原点28画出的图象,并求:(1)顶点坐标与对称轴方程;(2)x取何值时,y随x增大而减小?x取何值时,y随x增大而增大?(3)当x为何值时,函数有最大值或最小值,其值是多少?(4)x取何值时,y0,y0,y0?(5)当y取何值时,2x2?拓展、探究、思考29已知函
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 学习 探究 诊断 二次 函数
链接地址:https://www.31ppt.com/p-4665163.html