167;2.1.2 花边有多宽(二)北方教育网.doc
《167;2.1.2 花边有多宽(二)北方教育网.doc》由会员分享,可在线阅读,更多相关《167;2.1.2 花边有多宽(二)北方教育网.doc(5页珍藏版)》请在三一办公上搜索。
1、第二课时课 题 212 花边有多宽(二) 教学目标 (一)教学知识点 1探索一元二次方程的解或近似解 2培养学生的估算意识和能力 (二)能力训练要求 1经历方程解的探索过程,增进对方程解的认识,发展估算意识和能力 (三)情感与价值观要求 通过师生的共同活动,激发学生探求知识的欲望,从而加强学生估算意识和能力的培养教学重点 探索一元二次方程的解或近似解教学难点 培养学生的估算意识和能力教学方法 分组讨论法教具准备 投影片五张 第一张:花边有多宽(记作投影片212 A) 第二张:议一议(记作投影片212 B) 第三张:上节课的问题(记作投影片 212 C) 第四张:做一做(记作投影片 212 D)
2、 第五张:小亮的求解过程(记作投影片 212 E) 教学过程 I创设现实情景,引入新课 师前面我们通过实例建立了一元二次方程,并通过观察归纳出一元二次方程的有关概念,大家来回忆一下 生甲把只含有一个未知数并且都可以化为ax2+bx+c0(a、b、c为常数,a0)的整式方程叫做一元二次方程 生乙一元二次方程的一般形式是ax2+bx+cO(a、b、c为常数,a0). 其中ax2称为二次项,bx称为一次项,c为常数项;a和b分别称为二次项系数和一次项系数 师很好,现在我们来看上节课的问题:花边有多宽(出示投影片 212 A)一块四周镶有宽度相等的花边的地毯,如下图所示,它的长为8 m,宽为5 m,如
3、果地毯中央长方形图案的面积为18 m2,那么花边有多宽? 师生共析我们设花边的宽度为x,m,那么地毯中央长方形图案的长为(8-2x)m,宽为(5-2x)m根据题意,就得到方程 (8-2x)(5-2x)18 师大家想一下:能求出这个方程中的未知数x吗? 师这节课我们继续来探讨“花边有多宽” 讲授新课 师要求地毯的花边有多宽,由前面我们知道:地毯花边的宽x(m)满足方程 (8-2x)(5-2x)18 可以把它化为2x2-13x+11=0 由此可知:只要求出2x2-13x+110的解,那么地毯花边的宽度即可求出 如何求呢? 生可以选取一些值代入方程,看能否有使得方程左、右两边的值都相等的数值如果有,
4、则可求出花边的宽度 师噢,那如何选取数值呢?大家来分组讨论讨论(出示投影片212 B)1x可能小于0吗?说说你的理由2x可能大于4吗?可能大于25吗?说说你的理由,并与同伴进行交流3x的值应选在什么范围之内?4完成下表:x00.511.522.52x2-13x+115你知道地毯花边的宽x(m)是多少吗? 还有其他求解方法吗?与同伴进行交流 生甲因为x表示地毯的宽度,所以不可能取小于0的数 生乙x既不可能大于4,也不可能大于25因为如果x大于4,那么地毯的长度8-2x就小于0,如果x大于25时,那么地毯的宽度同样是小于0 生丙x的值应选在0和25之间 生丁表中的值为: 当x0时,2x2-13x+
5、1111(依次类推),即x00.511.522.52x2-13x+11114.750-4-7-9 生戊由上面的讨论可以知道:当x=1时,2x2-13x+110,正好与右边的值相等所以由此可知:x1是方程2x2-13x+11=0的解,从而得知;地毯花边的宽为1 m 生己我没有把原方程化为一般形式,而是把18分解为6 8然后凑数:8-2x6,5-2x3,两个一元一次方程的解正好为同解,x1 这样,地毯花边的宽度就可以求出来,即它为1 m 师同学们讨论得真棒,接下来大家来看上节课的另一实际问题,(出示投影片 212 C)如图,一个长为10 m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8 m,如果
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 167;212 花边有多宽二 北方教育网 167 花边 有多宽 北方 教育网
链接地址:https://www.31ppt.com/p-4663369.html