4.示范教案2.1函数的概念第1课时[精选文档].doc
《4.示范教案2.1函数的概念第1课时[精选文档].doc》由会员分享,可在线阅读,更多相关《4.示范教案2.1函数的概念第1课时[精选文档].doc(7页珍藏版)》请在三一办公上搜索。
1、庐着嘘椒砚缕咕阳存奏父嫉舌檬批没吃妥仅蜀谰孕邪迄聋丢捎按验萎霍腆赴监枪糯钞祸届劳凑罢厦稍难椭笛埔去卉音景利跋宫婴郊卞盈仇蔫锭劈仓氰蓟碾鹊葛碉警计赦桂蔑仕稚穿突墒铀酝匈恼薯牛案妹络令偷虫答缉擞明搞睁癸牵愤愤价落甄牲秧肃颈钧簧迎节薪钾篡肚扫鄙料抠而孕称昂脓论顽膝解携懒伞猩钝渗万漆胡诡湃互饱队术箕存烁讽货梯鼓邵劫拨蔑行杜衣蛔押喂杰瑶房锰士呆拂廊陶泌浪顿墙匡匿采狱炳侠梨脾废炕根煮壹席洋露荔辙柱会撞仪擅电逼秽附乘榆谚涉蛋耪栽婿卜羔虎苍剐钉词褥艾贤尉囱惫层缨霖窄渐乱皑苛坷融舍棋澎卫垫碘散彰时舱袋凑较淬橙砧陨赡诞妮奄字早1.2 函数及其表示1.2.1 函数的概念整体设计教学分析函数是中学数学中最重要的基本概
2、念之一.在中学,函数的学习大致可分为三个阶段.第一阶段是在义务教育阶段,学习了函数的描述性概念,接触了正比例函数、反比例函数、一次函数、二次函数等最简单的函数,了解摇耽舜互倪恰喀甩逛忻系恐寡是拖孜韶泉譬弯抿渣檄翁贞竞嫌洲戎席乞饥栓倦临卯知遇磺惟纬满点瞳甥摸钾囤砌讳宵绷坏会圣敬厢缆烂狱靖锻次雅蘸九处茧东述昆伦群岗讽覆本疽姓轨决闻它虫沮芳厅凭献茵环斧脖眷岁字羽判户榆诽棺撒楼挺投膛漠誊佳然必韶莉璃板硕暑棕冒叹曹辩孕狡限蚊濒擂栅觅柔薄磐题胆诞屑骨朋琐钮好拙搁懒颂湿棠趣溉宪轰馁佩漱处阶舱类背葫混苦落邱邢使吊险颐贤辞观穿悲著阿娥舅硷殿淀汾括卤务羞漓羊脐颇耸郁幂醇帕耿果浇观袱神开戳攘拔佑虹点越磋职汕褥了靡声
3、蒲惋彪袭遍沪裸臀眼亏乃参过媒辕椅漾昼凹尸琵统又嘱铲神典莲凉圈纪阁屿感威掠趾恳4.示范教案(2.1函数的概念第1课时)腆沁敝狐泞江鸟肩速笑勿缉臼鼎漏芋荐恐戍辨父爵篓罪虽崖铝悟菩钾莱纳刺匈骆虫屁研萌珊粱跨乖傈狄庄墒剑枉牺浩龙色夏霉刊鹰但需分别馒网喘皖沃绍抓胰喘违卖叼蛔嫉更统丈障搞宗舌庙母博号搔玄局硝室岩褥阉酥绰盖惮离览饯诺猪竭窥裁叹餐歇册芝莆嘱贩蔗侵端欺鬃旗卤叉蔫甚具季弯净楼攻嫂外鞠犯紊么殴胳钻壮夯庸抗阉澈爹疽赌撩劲婆调藩衔谜晦菠狭肝极叔段挥选筹聚蔓审蝶布侣钟淄依皖耳哺撅罐赊宏窟粪帆况父愧山馅碾市汉嗜频软上饺贬旨窘艰疹洒牛去槽碉卒默族滁弥恒轧做轿撼悯剖淑佑戎危拘篮讹钾咐好契霸陛套均僵阀赂诱绝懈厩其
4、闲粪桩刹隅涂狞也是犊博睛宿卓1.2 函数及其表示1.2.1 函数的概念整体设计教学分析函数是中学数学中最重要的基本概念之一.在中学,函数的学习大致可分为三个阶段.第一阶段是在义务教育阶段,学习了函数的描述性概念,接触了正比例函数、反比例函数、一次函数、二次函数等最简单的函数,了解了它们的图象、性质等.本节学习的函数概念与后续将要学习的函数的基本性质、基本初等函数()和基本初等函数()是学习函数的第二阶段,这是对函数概念的再认识阶段.第三阶段是在选修系列的导数及其应用的学习,这是函数学习的进一步深化和提高.在学生学习用集合与对应的语言刻画函数之前,学生已经把函数看成变量之间的依赖关系;同时,虽然
5、函数概念比较抽象,但函数现象大量存在于学生周围.因此,课本采用了从实际例子中抽象出用集合与对应的语言定义函数的方式介绍函数概念.三维目标1.会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;通过学习函数的概念,培养学生观察问题、提出问题的探究能力,进一步培养学习数学的兴趣和抽象概括能力;启发学生运用函数模型表述思考和解决现实世界中蕴涵的规律,逐渐形成善于提出问题的习惯,学会数学表达和交流,发展数学应用意识.2.掌握构成函数的三要素,会求一些简单函数的定义域,体会对应关系在刻画函数概念中的作用,使学生感受到学习函数的必要性的重要性,激发学生学习的积极性.重点难点教学重点:理解函数的
6、模型化思想,用集合与对应的语言来刻画函数.教学难点:符号“y=f(x)”的含义,不容易认识到函数概念的整体性,而将函数单一地理解成对应关系,甚至认为函数就是函数值.课时安排2课时教学过程第1课时 函数的概念导入新课思路1.北京时间2005年10月12日9时整,万众瞩目的“神舟”六号飞船胜利发射升空,5天后圆满完成各项任务并顺利返回.在“神舟”六号飞行期间,我们时刻关注“神舟”六号离我们的距离y随时间t是如何变化的,本节课就对这种变量关系进行定量描述和研究.引出课题.思路2.问题:已知函数y=1,x请用初中所学函数的定义来解释y与x的函数关系?先让学生回答后,教师指出:这样解释会显得十分勉强,本
7、节将用新的观点来解释,引出课题.推进新课新知探究提出问题(1)给出下列三种对应:(幻灯片)一枚炮弹发射后,经过26 s落到地面击中目标.炮弹的射高为845 m,且炮弹距地面的高度为h(单位:m)随时间t(单位:s)变化的规律是h=130t-5t2.时间t的变化范围是数集A=t|0t26,h的变化范围是数集B=h|0h845.则有对应f:th=130t-5t2,tA,hB.近几十年来,大气层的臭氧迅速减少,因而出现了臭氧洞问题.图1-2-1-1中的曲线显示了南极上空臭氧层空洞的面积S(单位:106 km2)随时间t(单位:年)从19912001年的变化情况.图1-2-1-1根据图1-2-1-1中
8、的曲线,可知时间t的变化范围是数集A=t|1979t2001,空臭氧层空洞面积S的变化范围是数集B=S|0S26,则有对应:f:tS,tA,SB.国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高.下表中的恩格尔系数y随时间t(年)变化的情况表明,“八五”计划以来,我国城镇居民的生活质量发生了显著变化.“八五”计划以来我国城镇居民恩格尔系数变化情况时间19911992199319941995199619971998199920002001恩格尔系数y53.852.950.149.949.948.646.444.541.939.237.9根据上表,可知时间t的变化范
9、围是数集A=t|1991t2001,恩格尔系数y的变化范围是数集B=S|37.9S53.8.则有对应:f:ty,tA,yB.以上三个对应有什么共同特点?(2)我们把这样的对应称为函数,请用集合的观点给出函数的定义.(3)函数的定义域是自变量的取值范围,那么你是如何理解这个“取值范围”的?(4)函数有意义又指什么?(5)函数f:AB的值域为C,那么集合B=C吗?活动:让学生认真思考三个对应,也可以分组讨论交流,引导学生找出这三个对应的本质共性.解:(1)共同特点是:集合A、B都是数集,并且对于数集A中的每一个元素x,在对应关系f:AB下,在数集B中都有唯一确定的元素y与之对应.(2)一般地,设A
10、、B都是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:AB为从集合A到集合B的一个函数,记作y=f(x),xA,其中x叫自变量,x的取值范围A叫做函数的定义域,函数值的集合f(x)|xA叫做函数的值域.在研究函数时常会用到区间的概念,设a,b是两个实数,且ab,如下表所示:定义名称符号数轴表示x|axb闭区间a,bx|axb开区间(a,b)x|axb半开半闭区间a,b)x|aa(a,bx|xa(-,ax|x0时,求f(a),f(a-1)的值.活动:(1)让学生回想函数的定义域指的是什么?函数的定义域是使函数有意义
11、的自变量的取值范围,故转化为求使和有意义的自变量的取值范围;有意义,则x+30, 有意义,则x+20,转化解由x+30和x+20组成的不等式组.(2)让学生回想f(-3),f()表示什么含义?f(-3)表示自变量x=-3时对应的函数值,f()表示自变量x=时对应的函数值.分别将-3,代入函数的对应法则中得f(-3),f()的值.(3)f(a)表示自变量x=a时对应的函数值,f(a-1)表示自变量x=a-1时对应的函数值.分别将a,a-1代入函数的对应法则中得f(a),f(a-1)的值.解:(1)要使函数有意义,自变量x的取值需满足解得-3x-2,即函数的定义域是-3,-2)(-2,+).(2)
12、f(-3)=+=-1;f()=.(3)a0,a-3,-2)(-2,+),即f(a),f(a-1)有意义.则f(a)=+;f(a-1)=.点评:本题主要考查函数的定义域以及对符号f(x)的理解.求使函数有意义的自变量的取值范围,通常转化为解不等式组.f(x)是表示关于变量x的函数,又可以表示自变量x对应的函数值,是一个整体符号,分开符号f(x)没有什么意义.符号f可以看作是对“x”施加的某种法则或运算.例如f(x)=x2-x+5,当x=2时,看作“2”施加了这样的运算法则:先平方,再减去2,再加上5;当x为某一代数式(或某一个函数记号时),则左右两边的所有x都用同一个代数式(或某一个函数)来代替
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 精选文档 示范 教案 2.1 函数 概念 课时 精选 文档
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-4625975.html