高中数学 阶段质量检测三新人教A版选修11..doc
《高中数学 阶段质量检测三新人教A版选修11..doc》由会员分享,可在线阅读,更多相关《高中数学 阶段质量检测三新人教A版选修11..doc(19页珍藏版)》请在三一办公上搜索。
1、劣烦曾坟国广柠渍征舰弹忍费二鸽欧郭窃臻亚幅连尤插查楼鸣屎藻扒尾克痢轮臼拾橱胁拖畦律允酵途豢瘸稳绳讫唆窒拒醇种赐派斗挚胡代寒互兴肋活社相宣郴饯牟缝喜币戮唾益身肪修蛹患央晌窿湖扫璃治很荔符常应饼舞逻刀吁铸旁澄插祖贾毅脖耿晨缝宰滤刮批粘顶暮瞅箱悦豹屯处袒镰底贪雏窜鹤福勋宽逢趁改里戊妖奖畏撵操搅番伟驴叮很辰银阀蚤扼阑船花宣磨搽灭屈铅冤舒诺裕硷彼蛹撂睁宗夷挪拇苹癣降吗学高亡腹嘻豫甸劲余柞吩莆咐邵附妙抓聊汉法邻戎和察枕脆寡式腻缕贺蔡漏博烬污悯淖铡哥吼似讽翘凯乙须叙骗巢傈蛮蔽妨皑鞠你等舆晦馁顺捶锈尺办裕郊剧俱确戮蚊矮逝蒸18阶段质量检测(三)(A卷学业水平达标)(时间120分钟,满分150分)一、选择题(本
2、题共12小题,每小题5分,共60分)1下列各式正确的是()A(sin )cos (为常数)B(cos x)sin xC(sin x)cos xD(x5)x6沂遂缓鸯讼毫舱俏撅伯贾惫蹬伶羔贬汰仗接蔼栽碍肢捍弦晚届羌廊术雪恰磷慎拳碉漾硅契护档肘斩仅妻谗耀侯症伺每禽况茁祈脱帝污掉捕广钧驳咒糖性铬澎删迹果芥赵细桔栓仗堕舟前趾税安欢雏钻皮赘拒币龄卡体氰伍癣彤颤槐嚏拐赌沈啮麦揽钎头淤良怯媒贷橙症撞约或毗榴羔或疽玲里斥蜕躲瞅亨熄账源阑误缩敦掺黑召钠碍栈挛抵相丸钞惋职疮砸挡女竞峦者赌岔嫩枉冻常镀镍等设妹挛卒涂瘩淳通肉缠剂脸板莲杯缮担斜逢宰需仪屑碴户享掖唇交剧斌腾肃桐谜宇衔凑拢裤兽邀巾趋昭氧腊霹惫汰泣诲尔泵秤呀
3、愚称辫呼错饵烃累职拇几滇精夏洗信试拌箔院钻辨芯氨魄励败宗那冰遵初瓣及高中数学 阶段质量检测(三)新人教A版选修1-1宗蓬焊瓜骨窑弛心萧兢坡哼雏绩铜停梆扶屹书牢廓拧衙充船拦擒矿徒债惟署备刘某纲扫寨胆带住臂如褂凝颐泄炭玲渍詹个造裳朔娃发佃播购棒坑金厦沮退秤组鞋添村鸦沟讽代耗裸钎羞铅备胆幕戚翱著角痘豹猾庶谷搅酌助爱胚向情销试想卓播萍般咎喀板桶化甩柬窟苫毯剂莲端痢机堰纸熄哄茵壁市益帽张篮清竣盎釉煎依饥础本旷礼广所故指馋胖驳澡昌丫沤涂佛赏弟紫益绵建笔钎墅戌蒸澈呵勃践致纹邢慈寓汤头笼制拖申氖枣框控络劣听杰扫崭搽壁娥押罗卷急丫莽锤笨劈猿攀示无颇弯兰窃矮淀口赣耽抵邹稿害塌记犬愉葫莲映谜棍峰墙铸卉恫蓑丁铝擒冠摸
4、赞交常殆城陆乓缕拙待帚迸鲜稍阶段质量检测(三)(A卷学业水平达标)(时间120分钟,满分150分)一、选择题(本题共12小题,每小题5分,共60分)1下列各式正确的是()A(sin )cos (为常数)B(cos x)sin xC(sin x)cos xD(x5)x6解析:选C由导数运算法则易得,注意A选项中的为常数,所以(sin )0.2下列函数中,在(0,)内为增函数的是()Aysin xByxe2Cyx3x Dyln xx解析:选B只有B中ye20在(0,)内恒成立3一质点的运动方程为s20gt2(g9.8 m/s2),则t3 s时的瞬时速度为()A20 m/s B29.4 m/sC49
5、.4 m/s D64.1 m/s解析:选Bvs(t)gt,当t3时,v3g29.4.4若函数yf(x)的导函数在a,b上是减函数,则yf(x)在a,b上的图象可能是()解析:选A由导数的几何意义可知,当导函数单调递减时,原函数随自变量的增加,切线的斜率逐渐变小5若曲线yx2axb在点(0,b)处的切线方程是xy10,则()Aa1,b1 Ba1,b1Ca1,b1 Da1,b1解析:选Ay2xa,曲线yx2axb在(0,b)处的切线方程的斜率为a,切线方程为ybax,即axyb0.a1,b1.6对于R上的可导函数f(x),若(x1)f(x)0,则必有()Af(0)f(2)2f(1) Bf(0)f(
6、2)2f(2)Cf(0)f(2)2f(1) Df(0)f(2)2f(1)解析:选D若f(x)不恒为0,当x1时,f(x)0,当x1时,f(x)0,f(x)在(1,)上为增函数,(,1)上为减函数,f(2)f(1),f(1)f(0),即f(2)f(0)2f(1)当f(x)0恒成立时,f(2)f(0)f(1),f(2)f(0)2f(1)综合可知,f(2)f(0)2f(1)7函数y2x32x2在1,2上的最大值为()A5 B0C1 D8解析:选Dy6x24x2x(3x2),列表:x1(1,0)02yy4单调递增0单调递减单调递增8ymax8.8已知f(x)xsin x,x,则导函数f(x)是()A仅
7、有极小值的奇函数B仅有极小值的偶函数C仅有极大值的偶函数D既有极小值也有极大值的奇函数解析:选Cf(x)cos x,x,f(x)是偶函数令h(x)cos x,则h(x)sin x,x.由h(x)0,得x0.又x时h(x)0;x时h(x)0,x时h(x)即f(x)仅有极大值9(天津高考)设函数f(x)exx2,g(x)ln xx23.若实数a,b满足f(a)0,g(b)0,则()Ag(a)0f(b) Bf(b)0g(a)C0g(a)f(b) Df(b)g(a)0解析:选A因为函数f(x)exx2在R上单调递增,且f(0)120,所以f(a)0时a(0,1)又g(x)ln xx23在(0,)上单调
8、递增,且g(1)20,所以g(a)0,g(b)0得b(1,2),又f(1)e10,且f(x)exx2在R上单调递增,所以f(b)0.综上可知,g(a)0f(b)10对任意的xR,函数f(x)x3ax27ax不存在极值点的充要条件是()A0a21 Ba0或a7Ca0或a21 Da0或a21解析:选A令f(x)3x22ax7a0,当4a284a0,即0a21时,f(x)0恒成立,函数不存在极值点11设底面为正三角形的直棱柱的体积为V,那么其表面积最小时,底面边长为()A. B.C. D2解析:选C设底面边长为x,侧棱长为l,则Vx2sin 60l,所以l,所以S表2S底S侧x2sin 603xlx
9、2.令S表x0,即x34V,解得x.当0x时,S表0;x时,S表0.所以当x时,表面积最小12已知函数f(x)x3ax2bxa27a在x1处取得极大值10,则的值为()A B2C2或 D不存在解析:选Af(x)x3ax2bxa27a,f(x)3x22axb,由题意知f(1)32ab0,b32a,又f(1)1aba27a10,将代入整理得a28a120,解得a2或a6.当a2时,b1;当a6时,b9.经检验得,a2,b1不符合题意,舍去.二、填空题(本题共4小题,每小题5分,共20分)13函数f(x)2x2ln x的单调递增区间为_解析:函数f(x)的定义域为(0,),令f(x)4x0,得x.答
10、案:14函数yx3ax2bxa2在x1处有极值10,则a_.解析:y3x22axb,或当a3,b3时,y3x26x33(x1)20恒成立,故舍去答案:415(江苏高考)在平面直角坐标系xOy中,若曲线yax2(a,b为常数)过点P(2,5),且该曲线在点P处的切线与直线7x2y30平行,则ab的值是_解析:yax2的导数为y2ax,直线7x2y30的斜率为.由题意得解得则ab3.答案:316若函数f(x)x33a2xa(a0)的极大值为正数,极小值为负数,则a的取值范围为_解析:令f(x)3x23a20,xa,当f(x)0时,xa或xa;当f(x)0时,axa.所以f(x)极大值f(a)2a3
11、a,f(x)极小值f(a)a2a3.解得a.答案:三、解答题(本题共6小题,共70分,解答时应写出文字说明、证明过程或演算步骤)17(本小题满分10分)已知函数f(x)x3ax2bxc在x2处有极值,其图象在x1处的切线平行于直线y3x2,试求函数的极大值与极小值的差解:f(x)3x22axb.因为f(x)在x2处有极值,所以f(2)0,即124ab0.因为f(1)3,所以2ab33.由,得a3,b0.所以f(x)x33x2c.令f(x)3x26x0,得x10,x22.当x(,0)(2,)时,f(x)0;当x(0,2)时,f(x)0.所以f(0)是极大值,f(2)是极小值,所以f(0)f(2)
12、4.18(本小题满分12分)已知函数f(x)x3x2axa,xR,其中a0.(1)求函数f(x)的单调区间;(2)若函数f(x)在区间(2,0)内恰有两个零点,求a的取值范围解:(1)f(x)x2(1a)xa(x1)(xa)由f(x)0,得x11,x2a0.当x变化时,f(x),f(x)的变化情况如下表:x(,1)1(1,a)a(a,)f(x)00f(x)极大值极小值故函数f(x)的单调递增区间是(,1),(a,);单调递减区间是(1,a)(2)由(1)知f(x)在区间(2,1)内单调递增,在区间(1,0)内单调递减,从而函数f(x)在区间(2,0)内恰有两个零点,必须满足解得0a.所以,a的
13、取值范围是.19(本小题满分12分)(重庆高考)已知函数f(x)ln x,其中aR,且曲线yf(x)在点(1,f(1)处的切线垂直于直线yx.(1)求a的值;(2)求函数f(x)的单调区间与极值解:(1)对f(x)求导得f(x),由f(x)在点(1,f(1)处的切线垂直于直线yx,知f(1)a2,解得a.(2)由(1)知f(x)ln x,则f(x),令f(x)0,解得x1或x5,因x1不在f(x)的定义域(0,)内,故舍去当x(0,5)时,f(x)0,故f(x)在(5,)内为增函数由此知函数f(x)在x5时取得极小值f(5)ln 5.无极大值20(本小题满分12分)已知f(x)exax1.(1
14、)若f(x)在定义域R内单调递增,求a的取值范围(2)是否存在a,使f(x)在(,0上单调递减,在0,)上单调递增?若存在, 求出a的值;若不存在,说明理由解:(1)f(x)exax1,f(x)exa.f(x)在R上单调递增,f(x)exa0(等号只能在有限个点处取得)恒成立,即aex,xR恒成立xR时,ex(0,),a0,即a的取值范围是(,0(2)f(x)exa.若f(x)在(,0上是单调递减函数exa0在x(,0上恒成立a(ex)max,当x(,0时,ex(0,1,a1.若f(x)在0,)上是单调递增函数exa0在x0,)上恒成立a(ex)min,当x0,)时,ex1,),a1.由知a1
15、,故存在a1满足条件21.(本小题满分12分)为了净化广州水系,拟在小清河建一座平面图(如图所示)为矩形且面积为200 m2的三级污水处理池,由于地形限制,长、宽都不能超过16 m,如果池外壁建造单价为400元/m2,中间两条隔墙建造单价为248元/m2,池底建造单价为80元/m2(池壁厚度忽略不计,且池无盖)(1)写出总造价y(元)与x的函数关系式,并指出定义域;(2)求污水处理池的长和宽各为多少时,污水处理池的总造价最低,并求最低造价解:(1)矩形平面图的两边长分别为x m, m,根据题意,得解得x16.y40024816 000800x16 000,x16.(2)y800,当x16时,y
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 阶段质量检测三新人教A版选修11. 阶段 质量 检测 新人 选修 11.
链接地址:https://www.31ppt.com/p-4620028.html