交叉口智能信号控制.pptx
《交叉口智能信号控制.pptx》由会员分享,可在线阅读,更多相关《交叉口智能信号控制.pptx(60页珍藏版)》请在三一办公上搜索。
1、交叉口智能信号控制,现代道路交通管理理论及应用,THE MAIN CONTENTS,交叉口智能信号控制,单路口智能信号控制,随着经济的快速发展,人民生活水平的不断提高,社会对城市交通提出了更高的要求,制约城市道路通行能力的瓶颈道路交叉口,也越来越受到人们的重视。提高交叉口通行能力和降低延误的最有效的方法之一就是交通信号控制。信号控制研究范围涉及相位分配的确定、性能函数的选取、控制参数的确定和配时方案的生成及配套的硬件设备选取等多个领域。,1)发展历程,2)交通信号控制系统的分类,定时式脱机系统,自适应控制系统,智能控制系统,点控方式,线控方式,面控方式,3)信号控制方法应用现状,目前,在全球范
2、围广泛采用的交通信号控制系统包括澳大利亚的SCATS系统和英国的SCOOT系统。SCATS属于方案选择式控制系统,每个交叉口配时方案根据子系统的整体需要进行选择,现在上海运行着该系统;SCOOT属于方案生成式实时自适应控制系统,采用小步长渐进寻优的方法,连续实时地调整绿信比、周期和时差3个参数,北京已引进该系统。,国内其他城市交通控制系统应用情况,1,单路口智能信号控制,定时控制:根据以往观测到的交通需求,按预先设定的配时方案进行控制,因此它对交通需求的随机变化是无法响应的。感应控制方法缺陷:感应控制只能检测是否有车辆到达而不关心有多少辆车到达,因此,它无法真正响应各相位的交通需求,也就不能使
3、车辆的总延误最小。例如:设某相位最短绿时为10s,最大绿时为40s,单位绿延时为5s,则在5s绿延时结束前,如果只有一辆车到达,仍须给出5s的单位绿延时,极端情况下重复上述过程直到最大绿时,共放行了11辆车,而在此期间,下一相位车道却有15辆车等待绿灯,很显然总的车辆延误没有达到最小。,1)单路口两相位的模糊控制,1977年,Pappis等人 设计了一种单路口两相位模糊逻辑控制器,计算机仿真结果证实了该方法的有效性。这是最早将模糊逻辑用于交通控制的例子。下面从延误模型、模糊算法和模糊控制几方面进行介绍。,(1)延误模型,考虑两相位控制的十字路口,东西向为一个相位,南北向为一个相位。假定各方向到
4、达的车辆是随机的,且到达的车辆数服从均匀分布。两个方向的饱和流量均为3600veh/h,无转向车流。设则红灯相位开始后第n(s)内的车辆排队长度为式中,p表示前一个绿灯期间未清完的车辆数。则红灯期间排队车辆总的等待时间为,如果在第n(s)内有一辆车到达否则,令s为饱和流量,则绿灯相位开始后第n(s)内,未清完的车辆排队长度为式中 为前一个红灯期间等候的车辆数。上式括号里的数为正时,z取1,否则z为0。则绿灯期间车辆总的等待时间为因此,一个周期内,一个方向上的车辆总延误为 有效红灯时间R(s)内的延误 有效绿灯时间R(s)内的延误平均每辆车的延误模型为,(2)模糊算法,该算法主要控制绿灯的延时时
5、间,分别在绿灯的第7s、17s、27s、37s和47s实施控制。在路口停车线前S(m)处设置车辆检测器,若测得车辆 的速度为,则其从检测器到临界点所花费的时间为例如:南北方向绿灯持续到第17s准备实施控制时,设在下一个10s 中,相继每一个时间单位1s横穿临界点(南北方向)的车辆数 与等候的车辆数(东西方向)已由检测器得到,分别为设准备实施控制时已有5辆车等候(东西方向),则下一个10s开始后各秒到达和等候的车辆累积数分别为,引入以下模糊变量:T表示“时间”的模糊输入变量,其取值为:“很短”、“短”、“中等”等。A表示“到达数”的模糊输入变量,此处指到达正在通行的车道上的车辆数。其取值为:“很
6、多”、“极少”等。Q表示“等候车辆数”的模糊输入变量,其取值为:“任意”、“很少”等。E表示“延长时间”的模糊输入变量。,时间A和延长时间E的赋值表,到达数A的赋值表,等候车辆数Q的赋值表,引入两种新的运算规则,设 为实轴 上的模糊子集,是其隶属度函数且 是使 达到最大的 中的元素,则 和 为定义在U上的模糊集,且有很明显模糊集“任意(any)”,在整个论域上都为1,(3)模糊控制,下面根据一些具体数据说明如何进行模糊控制。以第2次控制(即在绿灯第27s时)为例,并设 即考虑下一个10s的第8s;即在以后的8s中,如现在的信号灯不变,则有4辆车通过临界点;即在即在以后的8s中,如现在的信号灯不
7、变,则有5辆车等候;即信号灯的当前状态再保持8s。,根据第二次控制中的第1条规则,我们有,类似地求得其余4条控制规则的隶属度分别为,按照上述方法,分别取,则可得到控制决策表,如下表所示。由于“延长10s”所对应的隶属度0.8为最大,故决定控制器应保持当前状态10s不变。每次控制均按上述过程进行。如果模糊决策后要延长的时间小于10s,则系统将在延时结束后进行状态转换,然后在下一个相位进行模糊推理。如果表 最后一行所有的值均小于0.5,则不进行延时,系统的状态(即相位)要立刻转换。如果表中的最后一行有两个或两个以上相同的最大值,则取更长的那个延长时间。,模糊逻辑控制器与传统控制器的性能比较,2)单
8、路口的神经网络自学习控制,模糊控制规则一经确定就不再改变,即不具备实时学习功能。这样一来,系统的信号控制效果完全依赖于控制规则的合理性和遍历性,这对于交通状况复杂的路口,特别是多相位路口,是很难做到的。针对单路口多相位信号控制方式,提出了一种具有实时学习功能的神经网络信号控制方法。,(1)单路口的神经网络自学习控制,在车流量大和车流复杂的情况下,传统信号控制方法很难实施有效的控制,但一个经验丰富的交通警察却能应付自如。这说明可模拟交通警察思维的智能控制方法在复杂路口的信号控制方面有着广泛的应用前景。设所研究的平面交叉路口为一个十字形交叉路口。其中,东西南北4个进口均具有左转、直行和右转条车道,
9、(2)单路口的神经网络自学习控制,交通警察交通指挥的过程:首先将通行权交给某一方向,在此期间他将不断评价目前的交通状况1)如果通行方向的大部分车辆已疏散,而另一个方向车辆数增多,他会把通行权交给另一个方向;2)如果各方向的车辆数均比较多,则通行时间较长;3)如果各方向的车辆数均比较少,则通行时间较短。,具有在线自学习功能的智能控制方案结构图,(3)控制算法,1)评价准则评价准则环节的作用是评价一个评价周期内(假设由6个信号周期组成)某一信号配时方法的控制效果,并由此评价准则修正信号周期和各相位的绿信比。设 为第i个信号周期结束时的总排队长度;为第i个信号周期内第j个相位所有方向达到的车辆总数;
10、为第i个信号周期内第j个相位中所有方向放行的车辆总数;为第i个周期结束时第j个相位所有方向车流排队长度之和;为一个评价周期内,各信号周期结束时的总排队长度的平均值;为一个评价周期内,各信号周期结束时第j个相位中所有方 向车流的排队长度的平均值;,则有式中,当括号内的数小于0时,z=0,否则z=1,且有定义将 分为大、较大、中、小和很小5档,对应的周期增量 分别为10s、7s、5s、0s和-5s,则 为即为下一个评价周期内将要采用的新信号周期长度,然后计算最后计算 j=1,2,3,4,(4)神经网络在该信号控制系统中,两个神经网络作为控制器处于系统的底层。任何时刻只有一个在工作,而另一个则根据需
11、要(由评价准则确定)处于学习或空闲状态。输入:输出:C和,学习样本和训练方式:神经网络的学习样本分两个阶段获取。第一,在网络运行前,先将交警的指挥经验用规则的形式表示出来,然后用这些准则来训练两个神经网络,训练好的神经网络即可作为信号控制器投入运行。由于控制信号是4 相位的,信号控制规则的获取比较困难,且控制规则也往往不具备遍历性,因而此时的神经网络性能还不是最优的,还需要在运行过程中逐步进行优化。第二,在系统运行过程中,每隔一个评价周期(6个信号周期)按照前面所述的方法计算一次输入、输出,训练处于空闲状态的神经网络。如此重复,一个神经网络投入运行,一个学习,随着时间的推移,训练样本将会越来越
12、多,网络训练也将会越来越困难。为避免出现“样本爆炸”问题,采取了所谓的“样本截断”法即事先规定训练样本的规模(如300个,可根据需要任意设定),然后按照“顺序移位”的方式用新样本逐个淘汰旧样本。,神经网络自学习控制方法(简称方法1)神经网络学习交警控制经验方法(简称方法2)控制效果比较,2,基于智能体的信号交叉口控制,基于智能体的信号交叉口控制,交通信号控制系统在物理位置和控制逻辑上分散于动态变化的网络交通环境,将每个路口的交通信号控制器看做一个异质的智能体,非常适合采用“无模型、自学习、数据驱动”的多智能体强化学习方法建模与描述。,自Thorpe 于1997 年首次将强化学习(reinfor
13、cement learning,RL)方法应用于交通信号最优化控制以来,多智能体强化学习(multi-agent reinforcement learning,MARL)在区域交通自适应控制领域迅速发展并已有实际应用。,多智能体强化学习:智能体它们单独的和环境进行交互。在一种情况下它们各自优化自己的目标,但这些目标之间有约束;另一种情况下,它们联合起来优化一个主要的目标方程。根据具体的情况会有不同的变化。,绝大多数研究以假设的静态随机环境为研究对象,采用完全孤立或部分状态合作的协调机制进行本地路口的最优化控制,这制约了网络交通控制系统的整体效益。近年来,基于动作联动的 MARL 控制方法发展迅
14、速,其以联动协同的方式逼近全局最优的控制策略;同时,算法的验证也由假设的交通网络向现实的交通网络发展。,MARL 控制的演化发展,1)MARL控制系统的优势,从控制理论来看,MARL控制可根据控制效果的反馈信息自主学习并优化策略知识,是一种真正的闭环反馈控制。从控制范围来看,其可精确推理多个路口间的最优联合动作,丰富了区域交通协调控制的内容及形式。从控制实时性来看,它没有复杂的模型优化模块,采用秒级的即时决策,可实时响应时变交通流的变化。从系统可拓展性来看,分散式 MARL 控制具有统一的结构模型,可针对特定路网结构和交通流特性进行相应改造。从系统兼容性来看,MARL控制本身仅需要系统的输入和
15、输出数据,对数据具体采集的技术和形式无要求。,交通信号 RL 智能体的标准模型如图 1 所示,每个路口的交通信号机被抽象为一个智能体,控制对象为道路交通网络上时变交通流。RL 智能体与被控对象在闭环系统中不断进行交互,通过观察交通环境的实时状态,提取信号控制所需的交通状态信息和反馈奖励信息,选择相应的行为动作并执行;进而跟踪评测所选择动作的控制效果,以累积回报收益最大化为目标,优化控制策略直至收敛到“状态和动作”的最优概率映射。因而,RL 智能体将控制系统的优化过程按照时间进程划分为状态相互联系的多个阶段,并在每个阶段根据当前状态进行最优决策,这是典型的马尔可夫决策过程(Markov deci
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 交叉口 智能 信号 控制
链接地址:https://www.31ppt.com/p-4617132.html