六年级奥数-第五讲几何-立体部分教师版.doc
《六年级奥数-第五讲几何-立体部分教师版.doc》由会员分享,可在线阅读,更多相关《六年级奥数-第五讲几何-立体部分教师版.doc(22页珍藏版)》请在三一办公上搜索。
1、第五讲 几何立体部分教学目标:对于小学几何而言,立体图形的表面积和体积计算,既可以很好地考查学生的空间想象能力,又可以具体考查学生在公式应用中处理相关数据的能力,所以,很多重要考试都很重视对立体图形的考查知识点拨:一、 长方体和正方体如右图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱在六个面中,两个对面是全等的,即三组对面两两全等(叠放在一起能够完全重合的两个图形称为全等图形)长方体的表面积和体积的计算公式是:长方体的表面积:;长方体的体积:正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形如果它的棱长为,那么:,二、圆柱与圆锥立体图形表面积体积圆柱圆锥注:是母线,
2、即从顶点到底面圆上的线段长例题精讲:【例 1】 如右图,在一个棱长为10的立方体上截取一个长为8,宽为3,高为2的小长方体,那么新的几何体的表面积是多少?【解析】 我们从三个方向(前后、左右、上下)考虑,新几何体的表面积仍为原立方体的表面积:10106600【例 2】 右图是一个边长为4厘米的正方体,分别在前后、左右、上下各面的中心位置挖去一个边长l厘米的正方体,做成一种玩具它的表面积是多少平方厘米?(图中只画出了前面、右面、上面挖去的正方体) 【解析】 原正方体的表面积是44696(平方厘米)每一个面被挖去一个边长是1厘米的正方形,同时又增加了5个边长是1厘米的正方体作为玩具的表面积的组成部
3、分总的来看,每一个面都增加了4个边长是1厘米的正方形从而,它的表面积是:9646120平方厘米【巩固】在一个棱长为50厘米的正方体木块,在它的八个角上各挖去一个棱长为5厘米的小正方体,问剩下的立体图形的表面积是多少?【解析】 对于和长方体相关的立体图形表面积,一般从上下、左右、前后3个方向考虑变化前后的表面积不变:5050615000(平方厘米)【例 3】 下图是一个棱长为2厘米的正方体,在正方体上表面的正中,向下挖一个棱长为1厘米的正方体小洞,接着在小洞的底面正中向下挖一个棱长为厘米的正方形小洞,第三个正方形小洞的挖法和前两个相同为厘米,那么最后得到的立体图形的表面积是多少平方厘米? 【解析
4、】 我们仍然从3个方向考虑平行于上下表面的各面面积之和:2228(平方厘米);左右方向、前后方向:22416(平方厘米),1144(平方厘米),41(平方厘米),4(平方厘米),这个立体图形的表面积为:41(平方厘米).【例 4】 一个正方体木块,棱长是1米,沿着水平方向将它锯成2片,每片又锯成3长条,每条又锯成4小块,共得到大大小小的长方体24块,那么这24块长方体的表面积之和是多少? 【解析】 锯一次增加两个面,锯的总次数转化为增加的面数的公式为:锯的总次数2增加的面数原正方体表面积:1166(平方米),一共锯了(21)(31)(41)6次,6112618(平方米)【巩固】(2008年走美
5、六年级初赛)一个表面积为的长方体如图切成27个小长方体,这27个小长方体表面积的和是 【解析】 每一刀增加两个切面,增加的表面积等于与切面平行的两个表面积,所以每个方向切两刀后,表面积增加到原来的3倍,即表面积的和为【例 5】 如图,25块边长为1的正方体积木拼成一个几何体,表面积最小是多少? 【解析】 当小积木互相重合的面最多时表面积最小.设想27块边长为1的正方形积木,当拼成一个的正方体时,表面积最小,现在要去掉2块小积木,只有在两个角上各去掉一块小积木,或在同一个角去掉两块相邻的积木时,表面积不会增加,该几何体表面积为54.【例 6】 要把12件同样的长a、宽b、高h的长方体物品拼装成一
6、件大的长方体,使打包后表面积最小,该如何打包?当 b2h时,如何打包?当 b2h时,如何打包?当 b2h时,如何打包?【解析】 图2和图3正面的面积相同,侧面面积正面周长长方体长,所以正面的周长愈大表面积越大,图2的正面周长是8h6b,图3的周长是12h4b.两者的周长之差为2(b2h).当b2h时,图2和图3周长相等,可随意打包;当b2h时,按图2打包;当b2h时,按图3打包.【巩固】要把6件同样的长17、宽7、高3的长方体物品拼装成一件大的长方体,表面积最小是多少?【解析】 考虑所有的包装方法,因为6123,所以一共有两种拼接方式:第一种按长宽高116拼接,重叠面有三种选择,共3种包装方法
7、.第二种按长宽高123拼接,有3个长方体并列方向的重叠面有三种选择,有2个长方体并列方向的重叠面剩下2种选择,一共有6种包装方法.其中表面积最小的包装方法如图所示,表面积为1034.【例 7】 如图,在一个棱长为5分米的正方体上放一个棱长为4分米的小正方体,求这个立体图形的表面积【解析】 我们把上面的小正方体想象成是可以向下“压缩”的,“压缩”后我们发现:小正方体的上面与大正方体上面中的阴影部分合在一起,正好是大正方体的上面.这样这个立体图形的表面积就可以分成这样两部分:上下方向:大正方体的两个底面;四周方向(左右、前后方向):小正方体的四个侧面,大正方体的四个侧面上下方向:(平方分米);侧面
8、:(平方分米),(平方分米)这个立体图形的表面积为:(平方分米)【例 8】 (2008年“希望杯”五年级第2试)如图,棱长分别为厘米、厘米、厘米、厘米的四个正方体紧贴在一起,则所得到的多面体的表面积是_平方厘米【解析】 (法1)四个正方体的表面积之和为:(平方厘米),重叠部分的面积为:(平方厘米),所以,所得到的多面体的表面积为:(平方厘米)(法2)三视图法从前后面观察到的面积为平方厘米,从左右两个面观察到的面积为平方厘米,从上下能观察到的面积为平方厘米表面积为(平方厘米)【例 9】 把19个棱长为1厘米的正方体重叠在一起,按右图中的方式拼成一个立体图形.,求这个立体图形的表面积【解析】 从上
9、下、左右、前后观察到的的平面图形如下面三图表示因此,这个立体图形的表面积为:2个上面个左面个前面上表面的面积为:9平方厘米,左表面的面积为:8平方厘米,前表面的面积为:10平方厘米因此,这个立体图形的总表面积为:(平方厘米) 上下面 左右面 前后面【巩固】用棱长是1厘米的立方块拼成如右图所示的立体图形,问该图形的表面积是多少平方厘米?【解析】 该图形的上、左、前三个方向的表面分别由9、7、7块正方形组成该图形的表面积等于个小正方形的面积,所以该图形表面积为46平方厘米【例 10】 有30个边长为1米的正方体,在地面上摆成右上图的形式,然后把露出的表面涂成红色求被涂成红色的表面积【解析】 (平方
10、米)【例 11】 棱长是厘米(为整数)的正方体的若干面涂上红色,然后将其切割成棱长是1厘米的小正方体至少有一面红色的小正方体个数和表面没有红色的小正方体个数的比为,此时的最小值是多少?【解析】 切割成棱长是1厘米的小正方体共有个,由于其中至少有一面是红色的小正方体与没有红色面的个数之比为,而,所以小正方体的总数是25的倍数,即是25的倍数,那么是5的倍数当时,要使得至少有一面的小正方体有65个,可以将原正方体的正面、上面和下面涂色,此时至少一面涂红色的小正方体有个,表面没有红色的小正方体有个,个数比恰好是,符合题意.因此,的最小值是5【例 12】 有64个边长为1厘米的同样大小的小正方体,其中
11、34个为白色的,30个为黑色的现将它们拼成一个的大正方体,在大正方体的表面上白色部分最多可以是多少平方厘米?【解析】 要使大正方体的表面上白色部分最多,相当于要使大正方体表面上黑色部分最少,那么就要使得黑色小正方体尽量不露出来在整个大正方体中,没有露在表面的小正方体有(个),用黑色的;在面上但不在边上的小正方体有(个),其中个用黑色这样,在表面的个的正方形中,有22个是黑色,(个)是白色,所以在大正方体的表面上白色部分最多可以是74平方厘米【例 13】 三个完全一样的长方体,棱长总和是288厘米,每个长方体相交于一个顶点的三条棱长恰是三个连续的自然数,给这三个长方体涂色,一个涂一面,一个涂两面
12、,一个涂三面涂色后把三个长方体都切成棱长为1厘米的小正方体,只有一个面涂色的小正方体最少有多少个?【解析】 每个长方体的棱长和是厘米,所以,每个长方体长、宽、高的和是厘米因为,每个长方体相交于一个顶点的三条棱长恰是三个连续的自然数,所以,每个长方体的长、宽、高分别是9厘米、8厘米、7厘米要求切割后只有一个面涂色的小正方体最少有多少个,则需每一个长方体按题意涂色时,应让切割后只有一个面涂色的小正方体最少所以,涂一面的长方体应涂一个面,有个;涂两面的长方体,若两面不相邻,应涂两个面,有个;若两面相邻,应涂一个面和一个面,此时有个,所以涂两面的最少有105个;涂三面的长方体,若三面不两两相邻,应涂两
13、个面、一个面,有个;若三面两两相邻,有个,所以涂三面的最少有146个那么切割后只有一个面涂色的小正方体最少有个【例 14】 把一个大长方体木块表面上涂满红色后,分割成若干个同样大小的小正方体,其中恰好有两个面涂上红色的小正方体恰好是100块,那么至少要把这个大长方体分割成多少个小正方体?【解析】 设小正方体的棱长为1,考虑两种不同的情况,一种是长方体的长、宽、高中有一个是1的情况,另一种是长方体的长、宽、高都大于1的情况当长方体的长、宽、高中有一个是1时,分割后只有一层小正方体,其中有两个面涂上红色的小正方体是去掉最外层一圈的小正方体后剩下的那些因为有两个面涂上红色的小正方体恰好是100块,设
14、,那么分成的小正方体个数为,为了使小正方体的个数尽量少,应使最小,而两数之积一定,差越小积越小,所以当时它们的和最小,此时共有个小正方体当长方体的长、宽、高都大于1时,有两个面涂上红色的小正方体是去掉8个顶点所在的小正方体后12条棱上剩余的小正方体,因为有两个面涂上红色的小正方体恰好是100块,所以长方体的长、宽、高之和是由于三个数的和一定,差越大积越小,为了使小正方体的个数尽量少,应该令,此时共有个小正方体因为,所以至少要把这个大长方体分割成108个小正方体【例 15】 把正方体的六个表面都划分成9个相等的正方形用红、黄、蓝三种颜色去染这些小正方形,要求有公共边的正方形染不同的颜色,那么,用
15、红色染的正方形最多有多少个?【解析】 一个面最多有5个方格可染成红色(见左下图)因为染有5个红色方格的面不能相邻,可以相对,所以至多有两个面可以染成5个红色方格 其余四个面中,每个面的四个角上的方格不能再染成红色,至多能染4个红色方格(见上中图)因为染有4个红色方格的面也不能相邻,可以相对,所以至多有两个面可以染成4个红色方格最后剩下两个相对的面,每个面最多可以染2个红色方格(见右上图)所以,红色方格最多有(个)(另解)事实上上述的解法并不严密,“如果最初的假设并没有两个相对的有5个红色方格的面,是否其他的四个面上可以出现更多的红色方格呢?”这种解法回避了这个问题,如果我们从约束染色方格数的本
16、质原因入手,可严格说明是红色方格数的最大值对于同一个平面上的格网,如果按照国际象棋棋盘的方式染色,那么至少有一半的格子可以染成红色但是现在需要染色的是一个正方体的表面,因此在分析问题时应该兼顾棱、角等面与面相交的地方: 如图,每个角上三个方向的3个方格必须染成不同的三种颜色,所以8个角上最多只能有8个方格染成红色如图,阴影部分是首尾相接由个方格组成的环,这9个方格中只能有个方格能染成同一种颜色(如果有5个方格染同一种颜色,必然出现相邻,可以用抽屉原理反证之:先去掉一个白格,剩下的然后两两相邻的分成四个抽屉,必然有一个抽屉中有两个红色方格),像这样的环,在正方体表面最多能找到不重叠的两道(关于正
17、方体中心对称的两道),涉及的个方格中最多能有个可染成红色剩下个方格,分布在条棱上,这个格子中只能有个能染成红色综上所述,能被染成红色的方格最多能有个格子能染成红色,第一种解法中已经给出个红方格的染色方法,所以个格子染成红色是最多的情况【例 16】 一个长、宽、高分别为厘米、厘米、厘米的长方形.现从它的上面尽可能大的切下一个正方体,然后从剩余的部分再尽可能大的切下一个正方体,最后再从第二次剩余的部分尽可能大的切下一个正方体,剩下的体积是多少立方厘米?【解析】 本题的关键是确定三次切下的正方体的棱长.由于,为了方便起见.我们先考虑长、宽、高分别为厘米、厘米、厘米的长方体.因为,容易知道第一次切下的
18、正方体棱长应该是厘米,第二次切时,切下棱长为厘米的正方体符合要求.第三次切时,切下棱长为厘米的正方体符合要求那么对于原长方体来说,三次切下的正方体的棱长分别是12厘米、9厘米和6厘米,所以剩下的体积应是:(立方厘米).【例 17】 有黑白两种颜色的正方体积木,把它摆成右图所示的形状,已知相邻(有公共面)的积木颜色不同,标的为黑色,图中共有黑色积木多少块?【解析】 分层来看,如下图(切面平行于纸面)共有黑色积木17块. 【巩固】这个图形,是否能够由的长方体搭构而成?【解析】 每一个的长方体无论怎么放,都包含了一个黑色正方体和一个白色正方体,而黑色积木有17块,白色积木有15块,所以该图形不能够由
19、的长方体搭构而成.【巩固】有许多相同的立方体,每个立方体的六个面上都写着同一个数字(不同的立方体可以写相同的数字)先将写着2的立方体与写着1的立方体的三个面相邻,再将写着3的立方体写着2的立方体相邻(见左下图)依这样构成右下图所示的立方体,它的六个面上的所有数字之和是多少?【解析】 第一层如下图,第二层、第三层依次比上面一层每格都多1(见下图)上面的9个数之和是27,由对称性知,上面、前面、右面的所有数之和都是27同理,下面的9个数之和是45,下面、左面、后面的所有数之和都是45所以六个面上所有数之和是【例 18】 (05年武汉明心杯数学挑战赛)如图所示,一个的立方体,在一个方向上开有的孔,在
20、另一个方向上开有的孔,在第三个方向上开有的孔,剩余部分的体积是多少?表面积为多少?【解析】 求体积:开了的孔,挖去,开了的孔,挖去;开了的孔,挖去,剩余部分的体积是:(另解)将整个图形切片,如果切面平行于纸面,那么五个切片分别如图:得到总体积为:求表面积:表面积可以看成外部和内部两部分外部的表面积为,内部的面积可以分为前后、左右、上下三个方向,面积分别为、,所以总的表面积为(另解)运用类似于三视图的方法,记录每一方向上的不同位置上的裸露正方形个数:前后方向:上下方向:左右方向:总表面积为【总结】“切片法”:全面打洞(例如本题,五层一样),挖块成线(例如本题,在前一层的基础上,一条线一条线地挖)
21、,这里体现的思想方法是:化整为零,有序思考!【巩固】(2008年香港保良局第12届小学数学世界邀请赛)如图,原来的大正方体是由个小正方体所构成的其中有些小正方体已经被挖除,图中涂黑色的部分就是贯穿整个大正方体的挖除部分请问剩下的部分共有多少个小正方体?【解析】 对于这一类从立体图形中间挖掉一部分后再求体积(或小正方体数目)的题目一般可以采用“切片法”来做,所谓“切片法”,就是把整个立体图形切成一片一片的(或一层一层的),然后分别计算每一片或每一层的体积或小正方体数目,最后再把它们相加采用切片法,俯视第一层到第五层的图形依次如下,其中黑色部分表示挖除掉的部分 从图中可以看出,第1、2、3、4、5
22、层剩下的小正方体分别有22个、11个、11个、6个、22个,所以总共还剩下(个)小正方体【巩固】一个由125个同样的小正方体组成的大正方体,从这个大正方体中抽出若干个小正方体,把大正方体中相对的两面打通,右图就是抽空的状态右图中剩下的小正方体有多少个?【解析】 解法一:(用“容斥原理”来解)由正面图形抽出的小正方体有个,由侧面图形抽出的小正方体有个,由底面图形抽出的小正方体有个,正面图形和侧面图形重合抽出的小正方体有个,正面图形和底面图形重合抽出的小正方体有个,底面图形和侧面图形重合抽出的小正方体有个,三个面的图形共同重合抽出的小正方体有4个根据容斥原理,所以共抽出了52个小正方体,所以右图中
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 六年级 第五 几何 立体 部分 教师版
链接地址:https://www.31ppt.com/p-4609394.html