人工神经网络ANNPPT文档资料.ppt
《人工神经网络ANNPPT文档资料.ppt》由会员分享,可在线阅读,更多相关《人工神经网络ANNPPT文档资料.ppt(68页珍藏版)》请在三一办公上搜索。
1、30/04/2023,Artificial Neural Networks-I,1,Table of Contents,Introduction to ANNsTaxonomyFeaturesLearningApplications,I,30/04/2023,Artificial Neural Networks-I,2,Contents-I,Introduction to ANNsProcessing elements(neurons)ArchitectureFunctional Taxonomy of ANNsStructural Taxonomy of ANNsFeaturesLearni
2、ng ParadigmsApplications,30/04/2023,Artificial Neural Networks-I,3,The Biological Neuron,10 billion neurons in human brainSummation of input stimuliSpatial(signals)Temporal(pulses)Threshold over composed inputsConstant firing strength,billion synapses in human brainChemical transmission and modulati
3、on of signalsInhibitory synapsesExcitatory synapses,30/04/2023,Artificial Neural Networks-I,4,Biological Neural Networks,10,000 synapses per neuronComputational power=connectivityPlasticity new connections(?)strength of connections modified,30/04/2023,Artificial Neural Networks-I,5,Neural Dynamics,R
4、efractory time,Action potential,Action potential 100mVActivation threshold 20-30mVRest potential-65mVSpike time 1-2msRefractory time 10-20ms,30/04/2023,Artificial Neural Networks-I,6,神经网络的复杂性,神经网路的复杂多样,不仅在于神经元和突触的数量大、组合方式复杂和联系广泛,还在于突触传递的机制复杂。现在已经发现和阐明的突触传递机制有:突触后兴奋,突触后抑制,突触前抑制,突触前兴奋,以及“远程”抑制等等。在突触传递
5、机制中,释放神经递质是实现突触传递机能的中心环节,而不同的神经递质有着不同的作用性质和特点,30/04/2023,Artificial Neural Networks-I,7,神经网络的研究,神经系统活动,不论是感觉、运动,还是脑的高级功能(如学习、记忆、情绪等)都有整体上的表现,面对这种表现的神经基础和机理的分析不可避免地会涉及各种层次。这些不同层次的研究互相启示,互相推动。在低层次(细胞、分子水平)上的工作为较高层次的观察提供分析的基础,而较高层次的观察又有助于引导低层次工作的方向和体现其功能意义。既有物理的、化学的、生理的、心理的分门别类研究,又有综合研究。,30/04/2023,Art
6、ificial Neural Networks-I,8,The Artificial Neuron,Stimulus,urest=resting potentialxj(t)=output of neuron j at time twij=connection strength between neuron i and neuron ju(t)=total stimulus at time t,yi(t),x1(t),x2(t),x5(t),x3(t),x4(t),wi1,wi3,wi2,wi4,wi5,Neuron i,Response,30/04/2023,Artificial Neura
7、l Networks-I,9,Artificial Neural Models,McCulloch Pitts-type Neurons(static)Digital neurons:activation state interpretation(snapshot of the system each time a unit fires)Analog neurons:firing rate interpretation(activation of units equal to firing rate)Activation of neurons encodes informationSpikin
8、g Neurons(dynamic)Firing pattern interpretation(spike trains of units)Timing of spike trains encodes information(time to first spike,phase of signal,correlation and synchronicity,30/04/2023,Artificial Neural Networks-I,10,Binary Neurons,“Hard”threshold,=threshold,ex:Perceptrons,Hopfield NNs,Boltzman
9、n MachinesMain drawbacks:can only map binary functions,biologically implausible.,off,on,Stimulus,Response,30/04/2023,Artificial Neural Networks-I,11,Analog Neurons,“Soft”threshold,ex:MLPs,Recurrent NNs,RBF NNs.Main drawbacks:difficult to process time patterns,biologically implausible.,off,on,Stimulu
10、s,Response,30/04/2023,Artificial Neural Networks-I,12,Spiking Neurons,=spike and afterspike potentialurest=resting potentiale(t,u(t)=trace at time t of input at time t=thresholdxj(t)=output of neuron j at time twij=efficacy of synapse from neuron i to neuron ju(t)=input stimulus at time t,Response,S
11、timulus,30/04/2023,Artificial Neural Networks-I,13,Spiking Neuron Dynamics,30/04/2023,Artificial Neural Networks-I,14,赫布律,加拿大心理学家Donald Hebb出版了行为的组织一书,指出学习导致突触的联系强度和传递效能的提高,即为“赫布律”。在此基础上,人们提出了各种学习规则和算法,以适应不同网络模型的需要。有效的学习算法,使得神经网络能够通过连接权值的调整,构造客观世界的内在表示,形成具有特色的信息处理方法,信息存储和处理体现在网络的连接中。,30/04/2023,Arti
12、ficial Neural Networks-I,15,Hebbs Postulate of Learning,Biological formulation When an axon of cell A is near enough to excite a cell and repeatedly or persistently takes part in firing it,some growth process or metabolic change takes place in one or both cells such that As efficiency as one of the
13、cells firing B is increased.,30/04/2023,Artificial Neural Networks-I,16,赫布律,当细胞A的一个轴突和细胞B 很近,足以对它产生影响,并且持久地、不断地参与了对细胞B 的兴奋,那么在这两个细胞或其中之一会发生某种生长过程或新陈代谢变化,以致于A作为能使B 兴奋的细胞之一,它的影响加强了。,30/04/2023,Artificial Neural Networks-I,17,Hebbs Postulate:revisited,Stent(1973),and Changeux and Danchin(1976)have expa
14、nded Hebbs rule such that it also mo-dels inhibitory synapses:If two neurons on either side of a synapse are activated simultaneously(synchronously),then the strength of that synapse is selectively increased.If two neurons on either side of a synapse are activated asynchronously,then that synapse is
15、 selectively weakened or eliminated.,30/04/2023,Artificial Neural Networks-I,18,Artificial Neural Networks,Output layer,Input layer,Hidden layers,fully connected,sparsely connected,30/04/2023,Artificial Neural Networks-I,19,Feedforward ANN Architectures,Information flow unidirectionalStatic mapping:
16、y=f(x)Multi-Layer Perceptron(MLP)Radial Basis Function(RBF)Kohonen Self-Organising Map(SOM),30/04/2023,Artificial Neural Networks-I,20,Recurrent ANN Architectures,Feedback connectionsDynamic memory:y(t+1)=f(x(),y(),s()(t,t-1,.)Jordan/Elman ANNsHopfield Adaptive Resonance Theory(ART),30/04/2023,Artif
17、icial Neural Networks-I,21,History,Early stages1943 McCulloch-Pitts:neuron as comp.elem.1948 Wiener:cybernatics1949 Hebb:learning rule1958 Rosenblatt:perceptron1960 Widrow-Hoff:least mean square algorithmRecession1969 Minsky-Papert:limitations perceptron modelRevival1982 Hopfield:recurrent network m
18、odel1982 Kohonen:self-organizing maps1986 Rumelhart et.al.:backpropagation,30/04/2023,Artificial Neural Networks-I,22,历史,40年代心理学家Mcculloch和数学家Pitts合作提出的兴奋与抑制型神经元模型和Hebb提出的神经元连接强度的修改规则,他们的研究结果至今仍是许多神经网络模型研究的基础。50年代、60年代的代表性工作是Rosenblatt的感知机和Widrow的自适应性元件Adaline。1969年,Minsky和Papert合作发表了颇有影响的Perceptron
19、一书,得出了消极悲观的论点,加上数字计算机正处于全盛时期并在人工智能领域取得显著成就,70年代人工神经网络的研究处于低潮。,30/04/2023,Artificial Neural Networks-I,23,历史,80年代后,传统的Von Neumann数字计算机在模拟视听觉的人工智能方面遇到了物理上不可逾越的极限。与此同时,Rumelhart与Mcclelland以及Hopfield等人在神经网络领域取得了突破性进展,神经网络的热潮再次掀起。自适应共振理论(ART)组织特征映射理论Hinton 等人最近提出了 Helmboltz 机 徐雷提出的 Ying-Yang 机理论模型 甘利俊一(S
20、.Amari)开创和发展的基于统计流形的方法应用于人工神经网络的研究,30/04/2023,Artificial Neural Networks-I,24,ANN Capabilities,LearningApproximate reasoningGeneralisation capabilityNoise filteringParallel processingDistributed knowledge baseFault tolerance,30/04/2023,Artificial Neural Networks-I,25,Main Problems with ANN,Knowledge
21、 base not transparent(black box)(Partially resolved)Learning sometimes difficult/slowLimited storage capability,30/04/2023,Artificial Neural Networks-I,26,ANN Learning Paradigms,Supervised learningClassificationControlFunction approximationAssociative memoryUnsupervised learningClusteringReinforceme
22、nt learningControl,30/04/2023,Artificial Neural Networks-I,27,Supervised Learning,Teacher presents ANN input-output pairsANN weights adjusted according to errorIterative algorithms(e.g.Delta rule,BP rule)One-shot learning(Hopfield)Quality of training examples is critical,30/04/2023,Artificial Neural
23、 Networks-I,28,Presented by Martin Ho,Eddy Li,Eric Wong and Kitty Wong-Copyright 2000,Linear Separability in Perceptrons,30/04/2023,Artificial Neural Networks-I,29,Presented by Martin Ho,Eddy Li,Eric Wong and Kitty Wong-Copyright 2000,Learning Linearly Separable Functions(1),What can these functions
24、 learn?Bad news:-There are not many linearly separable functions.Good news:-There is a perceptron algorithm that will learn any linearly separable function,given enough training examples.,30/04/2023,Artificial Neural Networks-I,30,Delta Rule,a.k.a.Least Mean SquaresWidrow-Hoff iterative delta rule(1
25、960)Gradient descent of the error surfaceGuaranteed to find minimum error configuration in single layer ANNsStochastic approximation of desired behaviour,30/04/2023,Artificial Neural Networks-I,31,Unsupervised Learning,ANN adapts weights to cluster input dataHebbian learningConnection stimulus-respo
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人工 神经网络 ANNPPT 文档 资料
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-4605590.html