[人力资源管理]03章 热力学第二定律1022.ppt
《[人力资源管理]03章 热力学第二定律1022.ppt》由会员分享,可在线阅读,更多相关《[人力资源管理]03章 热力学第二定律1022.ppt(150页珍藏版)》请在三一办公上搜索。
1、第三章 热力学第二定律,3.1 自发变化的共同特征,3.2 热力学第二定律,3.3 Carnot定理,3.4 熵的概念,3.5 Clausius不等式与熵增加原理,3.6 热力学基本方程与T-S图,3.7 熵变的计算,3.8 熵和能量退降,3.9 热力学第二定律的本质和熵的统计意义,第三章 热力学第二定律,3.10 Helmholtz和Gibbs自由能,3.11 变化的方向与平衡条件,3.13 几个热力学函数间的关系,3.12 的计算示例,3.14 热力学第三定律及规定熵,*3.15 绝对零度不能到达的原理,*3.16 不可逆过程热力学简介,*3.17 信息熵浅释,3.1 自发过程(自然过程)
2、的共同特征不可逆性(单向性),以上自发过程的共同特征是单向性、不可逆性。要想使体系回复原态必须付出代价,最后总要给环境留下痕迹或影响。所有天然过程的不可逆性最后都可以转换为热功转换的不可逆性。,例1、水的天然流向不可逆,使用抽水机做功可以把抽回到高位,高位水流下又可发电。但事实证明水能不可以全部转变为电能,总有部分热损失不能变成功。,例2、化学反应:变化,(略去体积功)1-285.9kJ mol-1 系统放热,要使水分解,必须电解,这时环境将消耗电功W2237.2 J mol-1,同时系统吸热248.7kJ mol-1,体系恢复原状,3.2 热力学第二定律,第一类永动机:毛驴光拉磨不吃草,第二
3、类永动机:毛驴吃的草全部用来拉磨,Clausius 的说法:,Kelvin 的说法:,第二类永动机:从单一热源吸热使之完全变为功而不留下任何影响。,“不可能把热从低温物体传到高温物体,而不引起其他变化”,“不可能从单一热源取出热使之完全变为功,而不发生其他的变化”,后来被Ostward表述为:“第二类永动机是不可能造成的”。,3.3Carnot定理,Carnot定理:,Carnot定理的意义:,(2)原则上解决了热机效率的极限值问题。,(1)引入了一个不等号,原则上解决了化学反应的方向问题;,3.3Carnot定理,所有工作于同温热源和同温冷源之间的热机,其效率都不能超过可逆机,即可逆机的效率
4、最大。,3.3Carnot定理,(a),假设,3.3Carnot定理,(b),从低温热源吸热,高温热源得到热,这违反了Clausius说法,只有,3.4 熵的概念,从Carnot循环得到的结论:,对于任意的可逆循环,都可以分解为若干个小Carnot循环。,即Carnot循环中,热效应与温度商值的加和等于零。,先以P,Q两点为例,任意可逆循环的热温商,任意可逆循环,PVO=OWQ,MXO=OYN,证明如下:,同理,对MN过程作相同处理,使MXOYN折线所经过程作功与MN过程相同。,(2)通过P,Q点分别作RS和TU两条可逆绝热膨胀线,,(1)在任意可逆循环的曲线上取很靠近的PQ过程,(3)在P,
5、Q之间通过O点作等温可逆膨胀线VW,这样使PQ过程与PVOWQ过程所作的功相同。,使两个三角形PVO和OWQ的面积相等,,VWYX就构成了一个Carnot循环。,用相同的方法把任意可逆循环分成许多首尾连接的小卡诺循环,从而使众多小Carnot循环的总效应与任意可逆循环的封闭曲线相当,前一循环的绝热可逆膨胀线就是下一循环的绝热可逆压缩线(如图所示的虚线部分),这样两个绝热过程的功恰好抵消。,所以任意可逆循环的热温商的加和等于零,或它的环程积分等于零。,任意可逆循环分为小Carnot循环,任意可逆循环分为小Carnot循环,任意可逆循环,用一闭合曲线代表任意可逆循环。,将上式分成两项的加和,在曲线
6、上任意取A,B两点,把循环分成AB和BA两个可逆过程。,根据任意可逆循环热温商的公式:,熵的引出,说明任意可逆过程的热温商的值决定于始终状态,而与可逆途径无关,这个热温商具有状态函数的性质。,移项得:,任意可逆过程,熵的定义,Clausius根据可逆过程的热温商值决定于始终态而与可逆过程无关这一事实定义了“熵”(entropy)这个函数,用符号“S”表示,单位为:,对微小变化,这几个熵变的计算式习惯上称为熵的定义式,即熵的变化值可用可逆过程的热温商值来衡量。,或,设始、终态A,B的熵分别为 和,则:,3.5 Clausius 不等式与熵增加原理,Clausius 不等式 热力学第二定律的数学表
7、达式,熵增加原理,Clausius 不等式,设温度相同的两个高、低温热源间有一个可逆热机和一个不可逆热机。,根据Carnot定理:,则,推广为与n个热源接触的任意不可逆过程,得:,则:,Clausius 不等式,或,设有一个循环,为不可逆过程,为可逆过程,整个循环为不可逆循环。,则有,Clausius 不等式,如AB为可逆过程,将两式合并得 Clausius 不等式:,是实际过程的热效应,T是环境温度。若是不可逆过程,用“”号,可逆过程用“=”号,这时环境与系统温度相同。,Clausius 不等式,这些都称为 Clausius 不等式,也可作为热力学第二定律的数学表达式。,或,对于微小变化:,
8、熵增加原理,对于绝热系统,等号表示绝热可逆过程,不等号表示绝热不可逆过程。,如果是一个隔离系统,环境与系统间既无热的交换,又无功的交换,则熵增加原理可表述为:,所以Clausius 不等式为,熵增加原理可表述为:在绝热条件下,趋向于平衡的过程使系统的熵增加。,或者说在绝热条件下,不可能发生熵减少的过程,一个隔离系统的熵永不减少。,对于隔离系统,等号表示可逆过程,系统已达到平衡;不等号表示不可逆过程,也是自发过程。,因为系统常与环境有着相互的联系,若把与系统密切相关的环境部分包括在一起,作为一个隔离系统,则有:,可以用来判断自发变化的方向和限度,Clausius 不等式的意义,“”号为自发过程,
9、“=”号为可逆过程,(1)熵是系统的状态函数,是容量性质。,(3)在绝热过程中,若过程是可逆的,则系统的熵不变。若过程是不可逆的,则系统的熵增加。绝热不可逆过程向熵增加的方向进行,当达到平衡时,熵达到最大值。,(2)可以用Clausius不等式来判别过程的可逆性,熵的特点,(4)在任何一个隔离系统中,若进行了不可逆过程,系统的熵就要增大,一切能自动进行的过程都引起熵的增大。,3.6 热力学基本方程与T-S图,热力学的基本方程 第一定律与第二定律的联合公式,根据热力学第一定律,若不考虑非膨胀功,根据热力学第二定律,所以有,这是热力学第一与第二定律的联合公式,也称为热力学基本方程。,3.6 热力学
10、基本方程与T-S图,熵是热力学能和体积的函数,即,热力学基本方程可表示为,所以有,或,或,T-S图及其应用,根据热力学第二定律,系统从状态A到状态B,在T-S图上曲线AB下的面积就等于系统在该过程中的热效应。,什么是T-S图?,以T为纵坐标、S为横坐标所作的表示热力学过程的图称为T-S图,或称为温-熵图。,热机所作的功W为闭合曲线ABCDA所围的面积。,图中ABCDA表示任一可逆循环。,CDA是放热过程,所放之热等于CDA曲线下的面积,T-S图及其应用,ABC是吸热过程,所吸之热等于ABC曲线下的面积,任意循环的热机效率不可能大于EGHL所代表的Carnot热机的效率,图中ABCD表示任一循环
11、过程。,EG线是高温(T1)等温线,T-S图及其应用,ABCD的面积表示循环所吸的热和所做的功,LH是低温(T2)等温线,ABCD代表任意循环,EGHL代表Carnot 循环,GN和EM是绝热可逆过程的等熵线,T-S图及其应用,(c),T-S 图的优点:,(1)既显示系统所作的功,又显示系统所吸取或释放的热量。p-V 图只能显示所作的功。,(2)既可用于等温过程,也可用于变温过程来计算系统可逆过程的热效应;而根据热容计算热效应不适用于等温过程。,3.7 熵变的计算,等温过程中熵的变化值,非等温过程中熵的变化值,等温过程中熵的变化值,(1)理想气体等温可逆变化,对于不可逆过程,应设计始终态相同的
12、可逆过程来计算熵的变化值。,等温过程中熵的变化值,(2)等温、等压可逆相变(若是不可逆相变,应设计始终态相同的可逆过程),(3)理想气体(或理想溶液)的等温混合过程,并符合分体积定律,即,等温过程中熵的变化,例1:1 mol理想气体在等温下通过:(1)可逆膨胀,(2)真空膨胀,体积增加到10倍,分别求其熵变,并判断过程的可逆性。,解:(1)可逆膨胀,(1)为可逆过程。,等温过程中熵的变化,例1:1 mol理想气体在等温下通过:(1)可逆膨胀,(2)真空膨胀,体积增加到10倍,分别求其熵变,并判断过程的可逆性。,解:(2)真空膨胀,(2)为不可逆过程。,熵是状态函数,始终态相同熵变也相同,所以:
13、,(系统未吸热,也未做功),例2:求下述过程熵变,解:,如果是不可逆相变,可以设计可逆相变求 值。,已知H2O(l)在汽化时吸热,显然,例3:在273 K时,将一个 的盒子用隔板一分为二,,解法1,求抽去隔板后,两种气体混合过程的熵变?,例3:在273 K时,将一个 的盒子用隔板一分为二,,解法2,求抽去隔板后,两种气体混合过程的熵变?,非等温过程中熵的变化值,(1)物质的量一定的可逆等容、变温过程,(2)物质的量一定的可逆等压、变温过程,非等温过程中熵的变化,(3)物质的量一定从 到 的过程。,这种情况一步无法计算,要分两步计算。,有多种分步方法:,1.先等温后等容,2.先等温后等压,*3.
14、先等压后等容,变温过程的熵变,1.先等温后等容,2.先等温后等压,*3.先等压后等容,3.8 熵和能量退降,热力学第一定律表明:一个实际过程发生后,能量总值保持不变。,热力学第二定律表明:在一个不可逆过程中,系统的熵值增加。,能量总值不变,但由于系统的熵值增加,说明系统中一部分能量丧失了作功的能力,这就是能量“退降”。,能量“退降”的程度,与熵的增加成正比,有三个热源,热机 做的最大功为,热机 做的最大功为,其原因是经过了一个不可逆的热传导过程,功变为热是无条件的,而热不能无条件地全变为功,热和功即使数量相同,但“质量”不等,功是“高质量”的能量,高温热源的热与低温热源的热即使数量相同,但“质
15、量”也不等,高温热源的热“质量”较高,做功能力强。,从高“质量”的能贬值为低“质量”的能是自发过程。,3.9 热力学第二定律的本质和熵的统计意义,热力学第二定律的本质,热是分子混乱运动的一种表现,而功是分子有序运动的结果。,功转变成热是从规则运动转化为不规则运动,混乱度增加,是自发的过程;,而要将无序运动的热转化为有序运动的功就不可能自动发生。,热与功转换的不可逆性,气体混合过程的不可逆性,将N2和O2放在一盒内隔板的两边,抽去隔板,N2和O2自动混合,直至平衡。,这是混乱度增加的过程,也是熵增加的过程,是自发的过程,其逆过程决不会自动发生。,热力学第二定律的本质,热传导过程的不可逆性,处于高
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人力资源管理 人力资源管理03章 热力学第二定律1022 人力资源 管理 03 热力学第二定律 1022
链接地址:https://www.31ppt.com/p-4603382.html