立体几何复习专题(空间角)(学生卷).doc
《立体几何复习专题(空间角)(学生卷).doc》由会员分享,可在线阅读,更多相关《立体几何复习专题(空间角)(学生卷).doc(2页珍藏版)》请在三一办公上搜索。
1、空间角一、基础梳理1.两条异面直线所成的角(1)异面直线所成的角的范围:。(2)异面直线垂直:如果两条异面直线所成的角是直角,则叫两条异面直线垂直。两条异面直线 垂直,记作。(3)求异面直线所成的角的方法:(1)通过平移,在一条直线上(或空间)找一点,过该点作另一(或两条)直线的平行线;(2)找出与一条直线平行且与另一条相交的直线,那么这两条相交直线所成的角即为所求。平移技巧有:平行四边形对边平移、三角形中位线平移、补形平移技巧等。2直线和平面所成的角(简称“线面角”)(1)定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角。一直线垂直于平面,所成的角是直角;一直线
2、平行于平面或在平面内,所成角为0角。直线和平面所成角范围:0,。(2)最小角定理:斜线和平面所成角是这条斜线和平面内经过斜足的直线所成的一切角中最小的角。(3)公式:已知平面a的斜线a与a内一直线b相交成角,且a与a相交成j1角,a在a上的射影c与b相交成j2角,则有 。由(3)中的公式同样可以得到:平面的斜线和它在平面内的射影所成角,是这条斜线和这个平面内的任一条直线所成角中最小的角。3二面角(1)二面角的概念:平面内的一条直线把平面分为两个部分,其中的每一部分叫做半平面;从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面。若棱为,两个面分别为
3、的二面角记为。(2)二面角的平面角:过二面角的棱上的一点分别在两个半平面内作棱的两条垂线,则叫做二面角的平面角。说明:二面角的平面角范围是,因此二面角有锐二面角、直二面角与钝二面角之分。二面角的平面角为直角时,则称为直二面角,组成直二面角的两个平面互相垂直。(3)二面角的求法:(一)直接法:作二面角的平面角的作法:定义法;棱的垂面法;三垂线定理或逆定理法;(注意一些常见模型的二面角的平面角的作法)(二)间接法:面积射影定理的方法。(4)面积射影定理:面积射影定理:已知的边在平面内,顶点。设的面积为,它在平面内的射影面积为,且平面与所在平面所成的二面角为,则。注:面积射影定理反映了斜面面积、射影
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 立体几何 复习 专题 空间 学生
链接地址:https://www.31ppt.com/p-4593470.html