[高等教育]高数教案.doc
《[高等教育]高数教案.doc》由会员分享,可在线阅读,更多相关《[高等教育]高数教案.doc(35页珍藏版)》请在三一办公上搜索。
1、第十二章 微分方程第一节 微分方程的基本概念教学目的:理解并掌握微分方程的基本概念,主要包括微分方程的阶,微分方程 的通解、特解及微分方程的初始条件等教学重点:常微分方程的基本概念,常微分方程的通解、特解及初始条件教学难点:微分方程的通解概念的理解教学内容:一、 首先通过几个具体的问题来给出微分方程的基本概念。1一条曲线通过点(1,2),且在该曲线上任一点处的切线的斜率为2,求这条曲线的方程。解 设曲线方程为.由导数的几何意义可知函数满足 (1)同时还满足以下条件:时, (2)把(1)式两端积分,得 即 (3)其中C是任意常数。把条件(2)代入(3)式,得, 由此解出C并代入(3)式,得到所求
2、曲线方程: (4)2列车在平直线路上以20的速度行驶;当制动时列车获得加速度.问开始制动后多少时间列车才能停住,以及列车在这段时间里行驶了多少路程?解 设列车开始制动后秒时行驶了米。根据题意,反映制动阶段列车运动规律的函数满足: (5)此外,还满足条件:时, (6)(5)式两端积分一次得: (7)再积分一次得 (8)其中都是任意常数。把条件“时”和“时”分别代入(7)式和(8)式,得把的值代入(7)及(8)式得 (9) (10)在(9)式中令,得到列车从开始制动到完全停止所需的时间:。再把代入(10)式,得到列车在制动阶段行驶的路程上述两个例子中的关系式(1)和(5)都含有未知函数的导数,它们
3、都是微分方程。二、 定义 一般地,凡表示未知函数、未知函数的导数与自变量之间的关系到的方程,叫做微分方程。未知函数是一元函数的方程叫做常微分方程;未知函数是多元函数的方程,叫做偏微分方程。本章只讨论常微分方程。微分方程中所出现的求知函数的最高阶导数的阶数,叫做微分方程的阶。例如,方程(1)是一阶微分方程;方程(5)是二阶微分方程方程。又如,方程是四阶微分方程。一般地,阶微分方程的形式是 (11)其中F是个变量的函数。这里必须指出,在方程(11)中,是必须出现的,而等变量则可以不出现。例如阶微分方程中,除外,其他变量都没有出现。如果能从方程(11)中解出最高阶导数,得微分方程 (12)以后我们讨
4、论的微分方程都是已解出最高阶导数的方程或能解出最高阶导数的方程,且(12)式右端的函数在所讨论的范围内连续。由前面的例子我们看到,在研究某些实际问题时,首先要建立微分方程,然后找出满足微分方程的函数,就是说,找出这样的函数 ,把这函数代入微分方程能使该方程成为恒等式。这个函数就叫做该微分方程的解。确切地说,设函数在区间上有阶连续导数,如果在区间上,那么函数就叫做微分方程(11)在区间上的解。例如,函数(3)和(4)都是微分方程(1)的解;函数(8)和(10)都是微分方程(5)的解。如果微分方程的解中含有任意常数,且任意常数的个数与微分方程的阶数相同,这样的解叫做微分方程的通解。例如,函数(3)
5、是方程(1)的解,它含有一个任意常数,而方程(1)是一阶的,所以函数(3)是方程(1)的通解。又如,函数(8)是方程的解,它含有两个任意常数,而方程(5)是二阶的,所以函数(8)是方程(5)的通解。由于通解中含有任意常数,所以它还不能完全确定地反映某一客观事物的规律性,必须确定这些常数的值。为此,要根据问题的实际情况提出确定这些常数的条件。例如,例1中的条件(2),例2中的条件(6),便是这样的条件。设微分方程中的未知函数为,如果微分方程是一阶的,通常用来确定任意常数的条件是时,或写成 其中,都是给定的值;如果微分方程是二阶的,通常用来确定任意常数的条件是:时,或写成 ,其中,和都是给定的值。
6、上述条件叫做初始条件。确定了通解中的任意常数以后,就得到了微分方程的特解。例如(4)式是方程(1)满足条件(2)的特解;(10)式是方程(5)满足条件(6)的特解。求微分方程满足初始条件的特解这样一个问题,叫做一阶微分方程的初值问题,记作 (13)微分方程的解的图形是一条曲线,叫做微分方程的积分曲线。初值问题(13)的几何意义是求微分方程的通过点的那条积分曲线。二阶微分方程的初值问题的几何意义是求微分方程的通过点且在该点处的切线斜率为的那条积分曲线。三、 例题例1 验证:函数 (14)是微分方程 (15)的解。解 求出所给函数(14)的导数 把 及 的表达式代入方程(15)得+函数(14)及其
7、导数代入方程(15)后成为一个恒等式,因此函数(14)是微分方程(15)的解。例2 已知函数(14)当 时是微分方程(15)的通解,求满足初始条件的特解。解 将条件“ 时,”代入(14)式得。将条件“ 时,”代入(16)式,得。把的值代入(14)式,就得所求的特解为。小结:本节讲述了微分方程的基本概念,及一般形式,常微分方程的通解、特解及微分方程的初始问题第二节 可分离变量的微分方程教学目的:熟练掌握可分离变量的微分方程的解法教学重点:可分离变量的微分方程的解法教学难点:可分离变量的微分方程的解法教学内容:本节开始,我们讨论一阶微分方程 (1)的一些解法.一阶微分方程有时也写成如下的对称形式:
8、 (2)在方程(2)中,变量与对称,它既可以看作是以为自变量、为未知函数的方程 ,也可看作是以为自变量、为未知函数的方程 ,在第一节的例1中,我们遇到一阶微分方程,或 把上式两端积分就得到这个方程的通解:。但是并不是所有的一阶微分方程都能这样求解。例如,对于一阶微分方程 (3)就不能像上面那样直接两端用积分的方法求出它的通解。原因是方程(3)的右端含有未知函数积分求不出来。为了解决这个困难,在方程(3)的两端同时乘以,使方程(3)变为,这样,变量与已分离在等式的两端,然后两端积分得或 (4)其中C是任意常数。可以验证,函数(4)确实满足一阶微分方程(3),且含有一个任意常数,所以它是方程(3)
9、的通解。一般地,如果一个一阶微分方程能写成 (5)的形式,就是说,能把微分方程写成一端只含的函数和,另一端只含的函数和,那么原方程就称为可分离变量的微分方程。假定方程(5)中的函数和是连续的,设是方程的解,将它代入(5)中得到恒等式将上式两端积分,并由引进变量,得设及依次为和的原函数,于是有 (6)因此,方程(5)满足关系式(6)。反之,如果是由关系到式(6)所确定的隐函数 ,那么在的条件下,也是方程(5)的解。事实上,由隐函数的求导法可知,当时,这就表示函数满足方程(5)。所以如果已分离变量的方程(5)中和是连续的,且,那么(5)式两端积分后得到的关系式(6),就用隐式给出了方程(5)的解,
10、(6)式就叫做微分方程(5)的隐式解。又由于关系式(6)中含有任意常数,因此(6)式所确定的隐函数是方程(5)的通解,所以(6)式叫做微分方程(5)的隐式通解。例1 求微分方程 (7)的通解。解 方程(7)是可分离变量的,分离变量后得两端积分 得 从而 。又因为仍是任意常数,把它记作C便得到方程(7)的通解。例2 放射性元素铀由于不断地有原子放射出微粒子而变成其它元素,铀的含量就不断减少,这种现象叫做衰变。由原子物理学知道,铀的衰变速度与当时未衰变的原子的含量M成正比。已知时铀的含量为,求在衰变过程中含量随时间变化的规律。解 铀的衰变速度就是对时间的导数。由于铀的衰变速度与其含量成正比,得到微
11、分方程如下 (8)其中是常数,叫做衰变系数。前的负号是指由于当增加时M单调减少,即的缘故。由题易知,初始条件为方程(8)是可以分离变量的,分离后得两端积分 以表示任意常数,因为,得即 是方程(8)的通解。以初始条件代入上式,解得故得 由此可见,铀的含量随时间的增加而按指数规律衰落减。例3 有高1cm 的半球形容器,水从它的底部小孔流出,小孔横截面面积为1cm(图12-1)。开始时容器内盛满了水,求水从小孔流出过程中容器里水面的高度(水面与孔 口中心间的距离)随时间变化的规律。解 由水力学知道,水从孔口流出的流量(即通过孔口横截面的水的体积对时间的变化率)可用下列公式计算: 其中0.62 为流量
12、系数,为孔口横截面面积,为重力加速度,现在孔口横截面面积,故 或 (9) 另一方面,设在微小时间间隔内,水面高度由降至,则又可得到 (10)其中是时刻的水面半径(图123),右端置负号是由于,而的缘故。又因所以(10)式变成 。 (11)比较(9)和(11)两式,得 (12)这就是未知函数应满足得微分方程。此外,开始时容器内的水是满的,所以未知函数还应满足下列初始条件:。 (13)方程(13)是可分离变量的。分离变量后得两端积分,得即 (14)其中是任意常数。把初始条件(13)代入(14)式,得因此把所得的值代入(14)式并化简,就得。第三节 齐次方程教学目的:熟练掌握齐次微分方程的解法教学重
13、点:齐次方程的解法教学难点:齐次方程的解法教学内容:一、 齐次方程的形式如果一阶微分方程中的函数可写成的函数,即,则称这方程为齐次方程。例如是齐次方程,因为其可化为1 齐次方程 (1)的解法。作代换 ,则,于是从而 ,分离变量得 两端积分得 求出积分后,再用代替,便得所给齐次方程的通解。如上例分离变量,得 积分后,将=代回即得所求通解。例1 解方程。解 原式可化为,令=,则 ,于是分离变量 两端积分得 即 。故方程通解为 。例2 有旋转曲面形状得凹镜,假设由旋转轴上一点发出得一切光线经此凹镜反射后都与旋转轴平行(探照灯内得凹镜就是这样得)。求这旋转曲面得方程。解 取旋转轴为轴,光源所在之处取作
14、原点,取通过旋转轴得任一平面为坐标面,这平面截此旋转面得曲线(图122)。按曲线得对称性,我们可以在的范围内求的方程。设点为上的任一点,点发出的某条光线经点反射后是一条与轴平行的直线。又设过点的切线与轴的夹角为。根据题意,。另一方面,是入射角的余角,是反射角的余角,于是由光学中的反射定律有。从而。但,而。于是得微分方程。把看作未知函数,把看作自变量,当,上式即为。这是齐次方程。令则,代入上式,得即 。分离变量,得 。积分,得或 。由 ,得 以代入上式,得。这是以轴为轴、焦点在原点得抛物线,它绕轴旋转所得旋转抛物面的方程为,这就是所要求的旋转曲面方程。如果凹镜底面的直径是,从顶点到底面的距离是,
15、则以及代入,得。这时旋转抛物面得方程为。例3 设河边点的正对岸为点,河宽两岸为平行直线,水流速度为,有一鸭子从点游向点,设鸭子(在静水中)的游速为,且鸭子游动方向 始终朝着点,求鸭子游过的迹线的方程。解 设水流速度为,鸭子游速为,则鸭子实际运动速度为。取为坐标原点,河岸朝顺水方向为轴,轴指向对岸,如图123。设在时刻对鸭子位于点,则鸭子运动速度故有 。现有,而 ,其中与同方向的单位向量。由故,于是,从而由此得微分方程即 令则代入上面得方程,得分离变量得积分得即 于是 。以时代入上式,得,故鸭子游过得迹线方程为,。小结:1 讲述了一阶微分方程中可分离变量的微分方程及其解法。2 讲述了齐次方程,及
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高等教育 教案
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-4563173.html