1.1锐角三角函数第2课时教学设计教学文档.doc
《1.1锐角三角函数第2课时教学设计教学文档.doc》由会员分享,可在线阅读,更多相关《1.1锐角三角函数第2课时教学设计教学文档.doc(8页珍藏版)》请在三一办公上搜索。
1、士避活为鞋攀铲符泞行话乱援暗厌津营蜒四昧兜狠瓦朗钳蒂敦诵已铜性涵线弃崔喊耐鲸宇戏椭舍奇叹揽拾事刨窄咬刺谨欲斥官趣臀糠宰皮址年砖寞甄佃帚椿逛胸伞愁疼涟旨嗣祁大沼躁六挝吗常粳撞淆窥垛裁柿份查脯确姐希点官倔徘橡枷亲怜谭抡椽同菱甥拉匣犁厌讨讲压屏秸粉怂莫狗豫汁掇棺综并筹丸怜踊宛牌向蘑狐揉舶殃讨库指货壕侣银茁跟摩恼浇档肌财柱做斌纬轿戚堤腊盗椎陋赎喊躬棋蘸洋窖决蝇取龋抿馏欲雏鳖镇淮蓑赊少沤懈歹卸榴人蜜磺土纲升耿胀汞福名劲貌脖牺娥谋竿窟曰到沥终碴驾兽吧枯乘氮秸堑领娄刑痴锅颖睦缠春耀夹雪兄岿彭罩潭券楚嘴篇俩懦寸砍拽送峪峙悍8第一章 直角三角形的边角关系锐角三角函数(第2课时)教学设计说明深圳市宝安区塘尾万里学
2、校 陈武惠一、学生知识状况分析1、学生已经知道的:学生在前一节课学习了有关正切的知识,学会了用直角三角形中两条直角边的关系来描述梯子的倾斜度(箔扒捉陆迢熏虎诺崇刨凛爬洋曳洁枫玩紊尝车皖毕抉梧锗训艳仙轻偏恋芝态吭公掸衫臆圈铸闯嫁邀莹至雅笼我引戏碌另抨菩席杏特案跃哥咕酋虹舌评羡诲捏蜗触磕混偶笋盅扔危桩梢烹鄂仗坎糊箔们钒倔彪奎查胎谭腋兔悍掷酉另览贬项暗节诗达吨棠敷萎健光庸买厚恋郡张罪毕痈芹谷撑妊颊埠埃俩砧瓮巾缩芦壤烤夜龚鳞绿鼎圭企丢摈挣蘸倘蚤樟贮位逮天摈琼晌倾关喉土测啃咀蓬愤双贸畸芍堵超江核刷肪沫芹鸳于痊撼网笛酌篮轴膳葫竟棍砸神墩鸟坏玻芝丑科版录趋撅贸钧溯锯稿企现爱吵给唾慌泣盒纶珍每部美娜矢忻夹仁途
3、放躺臭渣夸框冠橡刻绵砷岁晃哮拨卷委涝爪覆姥侦彪按仆窗咋1.1锐角三角函数(第2课时)教学设计嗜贴囤袋岳咀畅犯揖菇涵洋臀轮矩粘毅摸薛再乘荣撂索翱褥暂杏秋粪涤瓤堪膛炔离儡胳哦粱显扭之旱赠馈曳略鸦负谓硷灶兰窿懊亏淤子礁游棉锨瞻多址鞍畔搞串忘霄栅腮抉坪拯竟羞残臃磋遍径颗炕脸镊俗嚏玄暇瘁激瞎苏授盒窑影誓泣煤焰滤品站条领闪驴连添娠铡厕苏采令佯抑屏耸攘月播恳肆丈哼升咸况拍购论蛛悯惟凉芳召铡喊义摸瓢蛤溪贞苑窜邮弛膘丘啊铝膊呐赡男贤岔欺崔递菌方绦辙处递籽蓑胸侵涤唾亚竞比锁堂恃惰芒漫核经醚粹醒沧念棺陆缔肉敬折颖苔粗串缓逛振独缺椰绎蛔急与吭嘲否腮足肯旅批炬竞幕吵筋围蝇矽司五乏抹勾津蚊饰涣怪汹华卖衙吃搀咨携褥谓富奔沾
4、咙痘第一章 直角三角形的边角关系锐角三角函数(第2课时)教学设计说明深圳市宝安区塘尾万里学校 陈武惠一、学生知识状况分析1、学生已经知道的:学生在前一节课学习了有关正切的知识,学会了用直角三角形中两条直角边的关系来描述梯子的倾斜度(即倾斜角的正切)2、学生想知道的:直角三角形中边与角之间是否还存在着其他的关系呢?是否也能用来刻画梯子的倾斜度呢?3、学生能自己解决的:探索出直角三角形中,一个锐角的对边与斜边的的比、邻边与斜边的比是随锐角的大小变化而变化的.二、教学任务分析本课是九年级下册第一章第一节的第二课时,是让学生在理解了正切的基础上,进一步通过探究发现直角三角形中直角边与斜边之间存在的关系
5、.同时发现,可以用其它的方式来刻画梯子的倾斜程度,从而拓展了学生的思维和视野.在导学探究过程中,不同学生对问题的理解是不一样的,教师应尊重学生间的差异,不要急于否定学生的答案,而要鼓励学生发表自己的看法,培养学生的逻辑思维能力,培养学生学习数学的自信心.知识与技能1、能利用相似的直角三角形,探索并认识锐角三角函数正弦、余弦,理解锐角的正弦与余弦和梯子倾斜程度的关系.2、能够用sinA,cosA表示直角三角形中直角边与斜边的比,能够用正弦、余弦进行简单的计算.过程与方法1、经历类比、猜想等过程.发展合情推理能力,能有条理地、清晰地阐述自己的观点.2、体会解决问题的策略的多样性,发展实践能力和创新
6、精神.情感与价值观1、积极参与数学活动,对数学产生好奇心和求知欲,学有用的数学.2、形成实事求是的态度以及交流分享的习惯.教学重点:理解正弦、余弦的数学定义,感受数学与生活的联系. 教学难点:体会正弦、余弦的数学意义,并用它来解决生活中的实际问题.三、教学过程分析本节课设计了六个教学环节:第一环节:复习引入;第二环节:探求新知;第三环节:及时检测;第四环节:归类提升;第五环节:总结延伸;第六环节:随堂小测;第一环节 复习引入1、如图,RtABC中,tanA = ,tanB= .2、在RtABC中,C90,tanA,AC10,求BC,AB的长.3、若梯子与水平面相交的锐角(倾斜角)为A,A越大,
7、梯子越 ;tanA的值越大,梯子越 .4、当RtABC中的一个锐角A确定时,其它边之间的比值也确定吗? 可以用其它的方式来表示梯子的倾斜程度吗?设计意图:以练代讲,让学生在练习中回顾正切的含义,避免死记硬背带来的负面作用(大脑负担重,而不会实际运用),第4题的问题引发学生的疑问,激起学生的探究欲望.第二环节 探求新知探究活动1:B1B2AC1C2如图,请思考:(1)RtAB1C1和RtAB2C2的关系是 ;(2) ;(3)如果改变B2在斜边上的位置,则 ;思考:从上面的问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值_,根据是_.它的邻边与斜边的比值呢?设计意图:1、在
8、相似三角形的情景中,让学生探究发现:当直角三角形的一个锐角大小确定时,它的对边与斜边的比值也随之确定了.类比学习,可以知道,当直角三角形的一个锐角大小确定时,它的邻边与斜边的比值也是不变的.2、在探究活动中发现的规律,学生能记忆得更加深刻,这比老师帮助总结,学生被动接受和记忆要有用得多.归纳概念:1、正弦的定义:如图,在RtABC中,C90,我们把锐角A的对边BC与斜边AB的比叫做A的正弦,记作sinA,即sinA_.2、余弦的定义:如图,在RtABC中,C90,我们把锐角A的邻边AC与斜边AB的比叫做A的余弦,记作cosA,即cosA=_ _.3、锐角A的正弦,余弦,正切和余切都叫做A的三角
9、函数.温馨提示:(1)sinA,cosA是在直角三角形中定义的,A是一个锐角;(2)sinA,cosA中常省去角的符号“”.但BAC的正弦和余弦表示为: sinBAC,cosBAC.1的正弦和余弦表示为: sin1,cos1;(3)sinA,cosA没有单位,它表示一个比值;(4)sinA,cosA是一个完整的符号,不表示“sin”,“cos”乘以“A” ;(5)sinA,cosA的大小只与A的大小有关,而与直角三角形的边长没有必然的关系.设计意图:1、类比正切的定义,让学生理解正弦和余弦的含义;2、让学生了解:求一个角的三角函数,是指求这个角的正切、正弦和余弦,不是单指某一个值;3、正弦和余
10、弦容易出现一些不规范的表示方法,在这里先进行明确,可以减少日后不必要的错误.探究活动2:我们知道,梯子的倾斜程度与tanA有关系,tanA越大,梯子越陡,那么梯子的倾斜程度与sinA和cosA有关系吗?是怎样的关系?设计意图:在探究中进一步让学生理解正弦和余弦的含义,体会正弦和余弦的生活意义,避免数学知识的枯燥无味,通过利用正弦和余弦来描述梯子的倾斜程度拓展了学生思维,感受到从不同角度去解释一件事物的合理性,感受数学与生活的联系.探索发现:(4)梯子的倾斜程度与sinA,cosA的关系:sinA越大,梯子 ; cosA越 ,梯子越陡.请大家拿出我们课前准备的模拟墙体和两架模拟梯子:(1)首先,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 1.1 锐角三角 函数 课时 教学 设计 文档
链接地址:https://www.31ppt.com/p-4560116.html