将军饮马模型(终稿)-将军饮马最大值模型.doc
《将军饮马模型(终稿)-将军饮马最大值模型.doc》由会员分享,可在线阅读,更多相关《将军饮马模型(终稿)-将军饮马最大值模型.doc(9页珍藏版)》请在三一办公上搜索。
1、将军饮马模型一、背景知识:【传说】早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题将军每天从军营A出发,先到河边饮马,然后再去河岸同侧的军营B开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它从此以后,这个被称为“将军饮马”的问题便流传至今【问题原型】将军饮马 造桥选址 费马点【涉及知识】两点之间线段最短,垂线段最短; 三角形两边三边关系; 轴对称 ;平移;【解题思路】找对称点,实现折转直二、将军饮马问题常见模型1.两定一动型:两定点到一动点的距离和最小例1:在定直线l上找一个动点P,
2、使动点P到两个定点A与B的距离之和最小,即PA+PB最小.作法:连接AB,与直线l的交点Q,Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB最小,且最小值等于AB.原理:两点之间线段最短。证明:连接AB,与直线l的交点Q,P为直线l上任意一点,在PAB中,由三角形三边关系可知:AP+PBAB(当且仅当PQ重合时取)例2:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB的和最小.关键:找对称点作法:作定点B关于定直线l的对称点C,连接AC,与直线l的交点Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB和最小,且最小值等于AC.原理:两点之间,线段最短证明
3、:连接AC,与直线l的交点Q,P为直线l上任意一点,在PAC中,由三角形三边关系可知:AP+PCAC(当且仅当PQ重合时取)2.两动一定型例3:在MON的部有一点A,在OM上找一点B,在ON上找一点C,使得BAC周长最短作法:作点A关于OM的对称点A,作点A关于ON的对称点A,连接A A,与OM交于点B,与ON交于点C,连接AB,AC,ABC即为所求原理:两点之间,线段最短例4:在MON的部有点A和点B,在OM上找一点C,在ON上找一点D,使得四边形ABCD周长最短作法:作点A关于OM的对称点A,作点B关于ON的对称点B,连接A B,与OM交于点C,与ON交于点D,连接AC,BD,AB,四边形
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 将军 饮马 模型 终稿 最大值
链接地址:https://www.31ppt.com/p-4555115.html