定积分换元法与分部积分法习题.doc
《定积分换元法与分部积分法习题.doc》由会员分享,可在线阅读,更多相关《定积分换元法与分部积分法习题.doc(20页珍藏版)》请在三一办公上搜索。
1、1计算下列定积分:;【解法一】应用牛顿-莱布尼兹公式。【解法二】应用定积分换元法令,则,当从单调变化到时,从单调变化到,于是有 。;【解法一】应用牛顿-莱布尼兹公式。【解法二】应用定积分换元法令,则,当从单调变化到1时,从1单调变化到16,于是有 。;【解法一】应用牛顿-莱布尼兹公式。【解法二】应用定积分换元法令,则,当从0单调变化到时,从1单调变化到0,于是有。;【解】被积式为,不属于三角函数的基本可积形式,须进行变换。由于1是独立的,易于分离出去独立积分,于是问题成为对的积分,这是正、余弦的奇数次幂的积分,其一般方法是应用第一换元法,先分出一次式以便作凑微分:,余下的,这样得到的便为变量代
2、换做好了准备。具体的变换方式有如下两种:【解法一】应用牛顿-莱布尼兹公式。【解法二】应用定积分换元法令,则,当从0单调变化到时,从1单调变化到,于是有。;【解】这是正、余弦的偶次幂,其一般积分方法为,利用三角函数的半角公式:,将平方部份降次成为一次的余弦三角函数:,使之可以换元成为基本可积形式:【解法一】应用牛顿-莱布尼兹公式。【解法二】应用定积分换元法令,则,当从单调变化到时,从单调变化到,于是有。;【解】被积函数中含根号,且根指数及根号内多项式的次数都是2,应该应用第二类换元法中的三角变换法:为使根号内的变量在后的平方差转换成完全平方,应令,当从0单调变化到时,从0单调变化到,且,使得。;
3、【解】被积函数中含根号,且根指数及根号内多项式的次数都是2,应该应用第二类换元法中的三角变换法:为使根号内的变量在后的平方差转换成完全平方,应令,当从单调变化到1时,从单调变化到,且,使得。();【解】被积函数中含根号,且根指数及根号内多项式的次数都是2,应该应用第二类换元法中的三角变换法:为使根号内的变量在后的平方差转换成完全平方,应令,当从0单调变化到时,从0单调变化到,且,使得。;【解】被积函数中含根号,且根指数及根号内多项式的次数都是2,应该应用第二类换元法中的三角变换法:为使根号内的变量在后的平方和转换成完全平方,应令,当从1单调变化到时,从单调变化到,且使得这时,再令,当从单调变化
4、到时,从单调变化到,又得。;【解】被积函数中含根号,且根指数及根号内多项式的次数都是2,应该应用第二类换元法中的三角变换法。由于根号内的二次多项式并非为三角变换中的平方和或差的标准形式,需要先将其转化为标准形:,现在,根号内的二次多项式成为了变量在后的平方差的形式了,因此可令,当从0单调变化到1时,从单调变化到0,从而对应从单调变化到0,而且,于是。;【解】被积函数中含根号,可见根指数与根号内多项式的次数不相等,应该应用第二类换元法中的直接变换法:【解法一】令,当从1单调变化到4时,从1单调变化到2,且由此得,于是。【解法二】为便于积分,可使变换后的分母成为简单变量,即令,当从1单调变化到4时
5、,从2单调变化到3,且由此得,于是。;【解】被积函数中含根号,可见根指数与根号内多项式的次数不相等,应该应用第二类换元法中的直接变换法:【解法一】令,当从单调变化到1时,从单调变化到0,且由此得,于是。【解法二】为便于积分,可使变换后的分母成为简单变量,即令,当从单调变化到1时,从单调变化到,且由此得,于是。;【解】被积函数中含根号,可见根指数与根号内多项式的次数不相等,应该应用第二类换元法中的直接变换法:令,当从单调变化到1时,从3单调变化到1,且由此得,于是。;【解】由于,为含复合函数的积分,且微分部份仅与复合函数之中间变量的微分相差一个常数倍,可以应用第一换元积分法:【解法一】应用牛顿-
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 积分 换元法 分部 习题
链接地址:https://www.31ppt.com/p-4554655.html