完全信息动态博弈.docx
《完全信息动态博弈.docx》由会员分享,可在线阅读,更多相关《完全信息动态博弈.docx(10页珍藏版)》请在三一办公上搜索。
1、 完全信息动态博弈博弈中的得益,是各参与人追求的根本目标,关于得益的信息是博弈中最重要的信息之一。在一些博弈中参与人对自己的得益情况完全清楚,对其他参与人的得益也都很清楚,如前面介绍过的囚徒困境,猜硬币等;还有一些博弈中,参与人对其他参与人的得益情况并不了解,例如投标、拍卖活动中,各参与人对其他参与人的标的的估价很难了解,即使最后的成交价是明确的,但各参与人仍然无法知道其他参与人中标、拍得标的的真正得益是多少。一般地,参与人完全了解所有参与人的得益情况的博弈称为“完全信息博弈”,不完全了解其他参与人的得益情况的博弈称为“不完全信息博弈”。博弈中的过程,是博弈结构的重要部分,根据博弈过程的不同,
2、可以将博弈分为:“静态博弈”、“动态博弈”和“重复博弈”。如果参与人选择战略时是同时或可以看作同时的博弈称为“静态博弈”;若各参与人战略的选择和行动不仅有先后顺序,后选择、后行动的参与人在自己选择行动之前,可以看到前面的过程,这种博弈称为“动态博弈”(也称为“多阶段博弈”)。动态博弈中在轮到行为时对博弈的进程完全了解的参与人,称为具有“完美信息”的参与人,如果动态博弈的所有参与人都有完美信息,称为“完美信息的动态博弈”。相应的轮到行为时对博弈的进程不完全了解的参与人,称为具有“不完美信息”,这样的动态博弈称为“不完美信息的动态博弈”。1 完全且完美信息动态博弈动态博弈中一个参与人的一次行为称为
3、一个“阶段”。由于每个参与人在动态博弈中可能不止一次行为,因此,每个参与人在一个动态博弈中就可能有数个甚至许多个博弈阶段。动态博弈一般用扩展形表示,括弧中前一个数字代表乙的得益,后一个数字代表甲的得益。动态博弈的一个中心问题是“可信性”问题。所谓可信性是指动态博弈中先行为的参与人是否该相信后行为的参与人会采取对自己有利的或不利的行为。因为后行为方将来会采取对先行为方有利的行为相当于一种“许诺”,而将来会采取对先行为方不利的行为相当于一种“威胁”,因此我们可将可信性分为“许诺的可信性”和“威胁的可信性”。1.1开金矿博弈我们以“开金矿博弈”为例来讨论可信性问题。甲要开采一价值4万元的金矿,缺1万
4、元的资金,向乙借1万元,许诺采到金子后与乙平分。乙是否借钱给甲呢?图1乙最需要关心的就是甲采到金子后是否会履行诺言跟自己平分,因为万一甲采到金子后不但不跟乙平分,而且还赖帐或卷款潜逃,则乙连自己的本钱都收不回来。关键的是要判断的许诺是否可信!以自身利益最大化原则,甲必然选择不分! 乙清楚甲的行为准则,最好的选择是不借!对乙来说,甲的许诺是不可信的!要想使甲的许诺成为可信的,加上第三阶段,让乙在甲违约时采用法律手段-“打官司”,乙的利益受到法律保护,甲的许诺是可信的。乙在第一阶段选择借,甲在第二阶段选择分。 图2 可信的诺言和威胁 图3 法律保障不足的开金矿博弈在第三阶段乙打官司不能收回本钱,还
5、要承受1万元的损失,这时乙打官司的威胁是不可信的。本博弈的分析可以看出,在一个个体都有私心,都只注重自身的利益的社会里,完善公正的法律制度不淡能够保障社会的公平,还能提高社会经济活动的效率,是实现最有效率的社会分工的重要保障。可信性是动态博弈分析的一个中心问题。1.2逆推归纳法分析动态博弈的方法是从最后一个阶段参与人的行为开始分析,逐步倒退回前一个阶段相应参与人的行为选择,一直到第一阶段的方法,称为“逆推归纳法”。逆推归纳法实际上是重复剔除劣战略方法在扩展式博弈中的应用。我们从最后一个决策结开始往回倒推,每一步剔除在该决策结上参与人的劣选择,因此,在均衡路径,每一个参与人在每一个信息集上的选择
6、都是占优选择。逆推归纳法可以用于许多动态博弈的分析求解,除了有些不完美信息动态博弈以外,是解析动态博弈的基本方法。在分析动态博弈问题时,我们必须发展新的均衡概念。2 子博弈完美纳什均衡动态博弈中存在不可信的行为选择,纳什均衡具有不稳定性。为了排除不可信的威胁或承诺因素,博弈理论又一次得到了发展,泽尔腾(1965)提出了“子博弈完美纳什均衡”,用来分析动态博弈。子博弈完美纳什均衡要求均衡战略的行为在每一个信息集上都是最优的。为此,我们首先引进“子博弈”的概念。简单的说,子博弈是原博弈的一个局部构成的次级博弈,它本身可以作为一个独立的博弈进行分析。2.1子博弈定义8.1 由一个动态博弈第一阶段以外
7、的某个阶段开始的后续博弈阶段构成,它必须有初始信息集,具备进行博弈所需要的各种信息,能够自成一个博弈的原博弈的一部分,称为原动态博弈的一个“子博弈”。以三阶段开金矿博弈为例,如果乙在第一阶段选择了“借”,动态博弈进行到第二阶段甲作选择。这时甲选择是否分成,然后轮到乙作选择是否打官司。这本身构成了一个两阶段的动态博弈,是原博弈的一个“子博弈”。当甲选择不分,博弈进行到乙选择打官司还是不打的第三阶段,是子博弈的子博弈,称后面的子博弈是原博弈“的二级子博弈”。如图中两层虚线框出。图4 开金矿博弈的两级子博弈例如,开金矿博弈,两个虚线框代表两个“子博弈”。应用逆推归纳法分析,在最后的子博弈中,乙在“打
8、官司”和“不打”中选择“打官司”,因为10,成为图5;这时甲在分与不分中选择分,因为21,成为图6;第一阶段乙的选择是借。 图5 开金矿(守信)-逆推第一步 图6开金矿(守信)-逆推第二步上面用逆推归纳法导出的动态博弈的结果是由各阶段轮到行为的参与人的一种行为依次构成的,在开金矿博弈中结果为(借,分),是由乙在第一阶段的借和甲在第二阶段的分构成。当然该博弈本来应该有三个阶段,但当甲在第二阶段选择分时第三阶段就没有必要进行下去了,因此结果中只有两个阶段的行为。需要注意的是乙的第三阶段虽然没有进行,但是它是保证第二阶段甲选择分的关键,所以乙的战略中必须包含这个选择。2.2子博弈完美纳什均衡有了子博
9、弈的概念,我们引进适合动态博弈的新的均衡概念,它必须满足(1)既是纳什均衡,从而具有战略稳定性,(2)又不能包含任何的不会信守的许诺或威胁。这样的动态博弈的战略组合称为“子博弈完美纳什均衡”。定义8.2 如果动态博弈中各参与人的策略在动态博弈本身和所有子博弈中都构成一个纳什均衡,则称该策略组合为一个“子博弈完美纳什均衡”。“子博弈完美纳什均衡”是分析动态博弈,或者说完全且完美信息动态博弈的关键概念。而逆推归纳法正是(至少在完美信息动态博弈范围之内)寻找动态博弈的子博弈完美纳什均衡的基本方法。子博弈完美纳什均衡能够排除均衡策略中不可信的威胁或许诺,就意味着每阶段各参与人的选择都是按最大利益原则决
10、策的,因此在每个子博弈中都只能采用纳什均衡的策略或行为选择。3 应用举例3.1寡占的斯塔克博格(Stackelberg)模型斯塔克博格模型是一种动态的寡头市场博弈模型。该模型假设寡头市场上的两个厂商中,一方较强一方较弱。较强的一方领先行动,而较弱的一方则跟在较强的一方之后行动。由于该模型中两厂商的选择是有先后的,且后一厂商(跟随者看着前一厂商的选择的,因此这是一个动态博弈。但是,因为两参与人的决策内容是产量水平,而可能的产量水平有无限多个,因此这是一个双方都有无限多种可能的选择的无限策略博弈。斯塔克博格模型与古诺模型相比,唯一的不同是前者有一个选择的次序问题,其他如参与人、策略空间和得益函数等
11、完全都是相同的。价格函数:;产品完全相同(没有固定成本,边际成本相等);总产量(连续产量);总成本分别为:。得益函数:根据逆推归纳法的思路,我们首先要分析第二阶段厂商2的决策,为此,我们先假设厂商1的选择为是已经确定的。这实际上就是在定的情况下求使实现最大值的,它必须满足: 8.1实际上它就是厂商2对厂商1的策略的一个反应函数。厂商1知道厂商2的这种决策思路,因此他在选择的时就知道是根据(1)式确定的,因此可将(1)式代入他自己的得益函数,然后再求其最大值。 8.2上式对的导数为0,可得,双方的得益分别为4.5和2.25。与两寡头同时选择的古诺模型的结果相比,斯塔克博格模型的结果有很大的不同。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完全 信息 动态 博弈

链接地址:https://www.31ppt.com/p-4554585.html