[理学]数值方法第2版答案.doc
《[理学]数值方法第2版答案.doc》由会员分享,可在线阅读,更多相关《[理学]数值方法第2版答案.doc(44页珍藏版)》请在三一办公上搜索。
1、C语言编程习题第二章习题2-25. 用二分法编程求 6x4 -40x2+9=0 的所有实根。#include #include #define N 10000double A,B,C;double f(double x) return (A*x*x*x*x+B*x*x+C);void BM(double a,double b,double eps1,double eps2) int k; double x,xe;double valuea = f(a);double valueb = f(b);if (valuea 0 & valueb 0 | valuea 0 & valueb 0) ret
2、urn;printf(Finding root in the range: %.3lf, %.3lfn, a, b); for(k=1;k=N;k+) x=(a+b)/2; xe=(b-a)/2; if(fabs(xe)eps2 | fabs(f(x)eps1) printf(The x value is:%gn,x); printf(f(x)=%gnn,f(x); return; if(f(a)*f(x)0) b=x; else a=x; printf(No convergence!n);int main() double a,b,eps1,eps2,step,start; printf(P
3、lease input A,B,C:n); scanf(%lf %lf %lf,&A,&B,&C); printf(Please input a,b, step, eps1,eps2:n); scanf(%lf %lf %lf %lf %lf,&a,&b,&step,&eps1,&eps2); for (start=a; (start+step) = b; start += step) double left = start;double right = start + step;BM(left, right, eps1, eps2); return 0;运行:Please input A,B
4、,C:6 -40 9Please input a,b, step, eps1,eps2:-10 10 1 1e-5 1e-5Finding root in the range: -3.000, -2.000The x value is:-2.53643f(x)=-0.00124902Finding root in the range: -1.000, 0.000The x value is:-0.482857f(x)=0.00012967Finding root in the range: 0.000, 1.000The x value is:0.482857f(x)=0.00012967Fi
5、nding root in the range: 2.000, 3.000The x value is:2.53643f(x)=-0.00124902有时若把判别语句if(fabs(xe)eps2 | fabs(f(x)eps1)改为if(fabs(xe)eps2 & fabs(f(x)eps1)会提高精度,对同一题运行结果:Finding root in the range: -3.000, -2.000The x value is:-2.53644f(x)=-4.26496e-007Finding root in the range: -1.000, 0.000The x value is
6、:-0.482861f(x)=-7.3797e-006Finding root in the range: 0.000, 1.000The x value is:0.482861f(x)=-7.3797e-006Finding root in the range: 2.000, 3.000The x value is:2.53644f(x)=-4.26496e-007习题2-35. 请用埃特金方法编程求出x=tgx在4.5(弧度)附近的根。#include #include #define N 100#define PI 3.1415926void SM(double x0,double ep
7、s) int k; double x; double x1,x2; for(k=1;k=N;k+) x1=sin(x0)/cos(x0); x2=sin(x1)/cos(x1); x=x0-(x1-x0)*(x1-x0)/(x2-2*x1+x0); if(fabs(x-x0)eps) printf(The x value is:%gn,x); return; x0=x; printf(No convegence!n);int main() double eps,x0; printf(Please input eps,x0:n); scanf(%lf %lf,&eps,&x0); SM(x0,e
8、ps); return 0;运行:Please input eps,x0:1e-5 4.5The x value is:4.49341习题2-411请编出用牛顿法求复根的程序,并求出 P(z)=z4-3z3+20z2+44z+54=0 接近于z0=2.5+4.5i 的零点。#include #include #define MAX_TIMES 1000typedef struct double real, image; COMPLEX;COMPLEX Aa5=54,0,44,0,20,0,-3,0,1,0;COMPLEX Bb4=44,0,40,0,-9,0,4,0;COMPLEX zero
9、= 0, 0;double eps1=1e-6;double eps2=1e-6;COMPLEX multi(COMPLEX a,COMPLEX b) COMPLEX result; result.real = a.real * b.real - a.image * b.image; result.image = a.image * b.real + a.real * b.image; return result;COMPLEX Div(COMPLEX a,COMPLEX b) COMPLEX z3; double s; s=(b.real*b.real)+(b.image*b.image);
10、 z3.real=b.real; z3.image=-b.image; z3=multi(a,z3); z3.real=z3.real/s; z3.image=z3.image/s; return z3;COMPLEX add(COMPLEX a,COMPLEX b) COMPLEX result; result.real = a.real + b.real; result.image = a.image + b.image; return result;COMPLEX subtract(COMPLEX a, COMPLEX b) COMPLEX result; result.real = a
11、.real - b.real; result.image = a.image - b.image; return result;COMPLEX times(COMPLEX z,int n) int i; COMPLEX result=1, 0; for (i=0;in;i+) result=multi(result,z); return result;double distance(COMPLEX a, COMPLEX b) return sqrt(a.real - b.real) * (a.real - b.real) + (a.image - b.image) * (a.image - b
12、.image);double complex_abs(COMPLEX a) return sqrt(a.real * a.real + a.image * a.image);COMPLEX f(COMPLEX x) int i; COMPLEX result=zero; for (i=0;i5;i+) result=add(result,multi(Aai,times(x,i); return result;COMPLEX ff(COMPLEX x) int i; COMPLEX result=zero; for (i=0;i4;i+) result=add(result,multi(Bbi,
13、times(x,i); return result;int main() COMPLEX z0,z1,result; double x,y; int k; printf(please input x,yn); scanf(%lf %lf,&x,&y); z0.real=x; z0.image=y; for(k=0; kMAX_TIMES; k+) z1 = subtract(z0, Div(f(z0), ff(z0); result = f(z1); if (distance(z0,z1)eps1 | complex_abs(result)eps2) printf(The root is: z
14、=(%.3f + %.3fi), f(z)=(%e + %ei)n, z1.real,z1.image, result.real, result.image); return 0; z0 = z1; printf(No convergence!n); return 0;运行:please input x,y2.5 4.5The root is: z=(2.471 + 4.641i), f(z)=(-1.122705e-007 + -1.910245e-007i)习题2-62. 请编程用劈因子法求高次方程 x4+ x 3+5 x 2+4 x +4=0的所有复根。#include#includei
15、nt main()float b20,c20;float delta;float eps;int print=0;float fru0,fru1,s0,s1,frv0,frv1;float deltau,deltav;float u,v;float a20;int n,j;float r0,r1;float r;int i, k;printf(Please input max exponent:n);scanf(%d,&n);printf(Please input epslion:n);scanf(%f,&eps);printf(Please input the coefficient:n);
16、for(i=0;i=n;i+) scanf(%f,&ai);for(j=0;j=n;j+) printf(+%.3fX%d,aj,n-j);printf(n); for(k=1;k=2;k+) u=an-1/an-2;v=an/an-2;if(k=2) u=0;v=4;while(1) b0=a0;b1=a1-u*b0;for(j=2;j=n;j+) bj=aj-u*bj-1-v*bj-2;r0=bn-1;r1=bn+u*bn-1;c0=b0;c1=b1-u*b0;for(j=2;j=n-2;j+)cj=bj-u*cj-1-v*cj-2;s0=cn-3;s1=cn-2+u*cn-3;fru0=
17、u*s0-s1;fru1=v*s0;frv0=-s0;frv1=-s1;deltau=-(frv1*r0-frv0*r1)/(fru0*frv1-fru1*frv0);deltav=-(fru1*r0-fru0*r1)/(frv0*fru1-frv1*fru0);u=u+deltau;v+=deltav;delta=u*u-4*v;if(fabs(deltau)eps)&(fabs(deltav)eps)print=1;printf(found roots:);r=-u/2;i=(int) sqrt(fabs(delta)/2;if(delta0) printf(%.3f+%.3fit,r,f
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 理学 数值 方法 答案
链接地址:https://www.31ppt.com/p-4543752.html