《斐波拉契数列与黄金分割.ppt》由会员分享,可在线阅读,更多相关《斐波拉契数列与黄金分割.ppt(33页珍藏版)》请在三一办公上搜索。
1、斐波拉契数列与黄金分割,出生:1170,比萨逝世:1240,比萨职业:数学家,作者宗教:天主教住址:意大利,比萨,斐波那契数列指的是这样一个数列 1,1,2,3,5,8,13,21,34,55,89,144,.这个数列从第三项开始,每一项都等于前两项之和。斐波那契数列的发明者,是意大利数学家列昂纳多斐波那契(Leonardo Fibonacci),生于公元1170年,卒于1240年,籍贯是比萨。他被人称作“比萨的列昂纳多”。1202年,他撰写了珠算原理(Liber Abacci)一书。他是第一个研究了印度和阿拉伯数学理论的欧洲人。他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的
2、阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯研究数学。,而且当n趋向于无穷大时,前一项与后一项的比值越来越逼近黄金分割0.618.(或者说后一项与前一项的比值小数部分越来越逼近黄金分割0.618、前一项与后一项的比值越来越逼近黄金分割0.618),自然界中巧合斐波那契数列在自然科学的其他分支,有许多应用。例如,树木的生长,由于新生的枝条,往往需要一段“休息”时间,供自身生长,而后才能萌发新枝。所以,一株树苗在一段间隔,例如一年,以后长出一条新枝;第二年新枝“休息”,老枝依旧萌发;此后,老枝与“休息”过一年的枝同时萌发,当年生的新
3、枝则次年“休息”。这样,一株树木各个年份的枝桠数,便构成斐波那契数列。这个规律,就是生物学上著名的“鲁德维格定律”。,另外,观察延龄草、野玫瑰、南美血根草、大波斯菊、金凤花、耧斗菜、百合花、蝴蝶花的花瓣,可以发现它们花瓣数目具有斐波那契数:3、5、8、13、21、其中百合花花瓣数目为3,梅花5瓣,飞燕草8瓣,万寿菊13瓣,向日葵21或34瓣,雏菊有34,55和89三个数目的花瓣。,这些植物懂得斐波那契数列吗?应该并非如此,它们只是按照自然的规律才进化成这样。这似乎是植物排列种子的“优化方式”,它能使所有种子具有差不多的大小却又疏密得当,不至于在圆心处挤了太多的种子而在圆周处却又稀稀拉拉。叶子的
4、生长方式也是如此,对于许多植物来说,每片叶子从中轴附近生长出来,为了在生长的过程中一直都能最佳地利用空间(要考虑到叶子是一片一片逐渐地生长出来,而不是一下子同时出现的),每片叶子和前一片叶子之间的角度应该是222.5度,这个角度称为“黄金角度”,因为它和整个圆周360度之比是黄金分割数0.618033989的倒数,而这种生长方式就决定了斐波那契螺旋的产生。向日葵的种子排列形成的斐波那契螺旋有时能达到89,甚至144条。1922年,两位法国科学家通过对花瓣形成过程的计算机仿真实验,证实了在系统保持最低能量的状态下,花朵会以菲波那契数列长出花瓣。,影视作品中的斐波那契数列斐波那契数列在欧美可谓是尽
5、人皆知,于是在电影这种通俗艺术中也时常出现,比如在风靡一时的达芬奇密码里它就作为一个重要的符号和情节线索出现,在魔法玩具城里又是在店主招聘会计时随口问的问题。可见此数列就像黄金分割一样流行。,排列组合有一段楼梯有10级台阶,规定每一步只能跨一级或两级,要登上第10级台阶有几种不同的走法?这就是一个斐波那契数列:登上第一级台阶有一种登法;登上两级台阶,有两种登法;登上三级台阶,有三种登法;登上四级台阶,有五种登法1,2,3,5,8,13所以,登上十级,有89种走法。类似的,一枚均匀的硬币掷10次,问不连续出现正面的可能情形有多少种?,斐波拉契数列的部分性质:,数学课可以是美的过程。比如说“山穷水尽疑无路,柳暗花明又一村”这两句诗,很美吧?你怎么理解这种美?这在数学上是太常见了,在你解题解得山穷水尽的时候,忽然茅塞顿开,体验一种顿悟的感觉,这就是那两句诗的意境。还有这句:“淘尽黄沙始到金,苦到尽头方知甜”。这是诗的境界,也是数学的境界,还有一种哲学之美在里面。这句诗是中学生活的写照。学习的过程就是一个苦尽甘来的过程,如果你更多的感受到学业的艰苦,正说明你的“苦”吃得还不够,还没有到“甘”来的境界。,
链接地址:https://www.31ppt.com/p-4537918.html