矩形的性质课件02.ppt
《矩形的性质课件02.ppt》由会员分享,可在线阅读,更多相关《矩形的性质课件02.ppt(26页珍藏版)》请在三一办公上搜索。
1、18.2 特殊的平行四边形,18.2.1 矩形,两组对边分别平行的四边形是平行四边形,平行四边形的性质:,平行四边形的对边平行;,平行四边形的对边相等;,平行四边形的对角相等;,平行四边形的邻角互补;,平行四边形的对角线互相平分;,温故知新,平行四边形的判定:,两组对边分别平行的四边形;,两组对边分别相等的四边形;,两组对角分别相等的四边形;,对角线互相平分的四边形;,一组对边平行且相等的四边形;,平行四边形的判定定理:,一个角是直角,两组对边分别平行,矩形,情景创设,我们已经知道平行四边形是特殊的四边形,因此平行四边形除具有四边形的性质外,还有它的特殊性质,同样对于平行四边形来说有特殊情况即
2、特殊的平行四边形,也就是这堂课我们就来研究一种特殊的平行四边形,矩形,有一个角是直角的平行四边形是矩形,矩形的定义:,对边平行且相等,对角相等,对角线互相平分,矩形的一般性质:,探索新知:矩形是一个特殊的平行四边形,除了具有平行四边形的所有性质外,还有哪些特殊性质呢?,猜想1:矩形的四个角都是直角,猜想2:矩形的对角线相等,A,B,C,D,命题:矩形的四个角都是直角,已知:如图,四边形ABCD是矩形,求证:A=B=C=D=90,证明:四边形ABCD是矩形,A=90,又 矩形ABCD是平行四边形,A=C B=D A+B=180,A=B=C=D=90即矩形的四个角都是直角,已知:如图,四边形ABC
3、D是矩形 求证:AC=BD,证明:四边形ABCD是矩形,ABC=DCB=90,又AB=DC,BC=CB,ABCDCB(SAS),AC=BD(即矩形的对角线相等),命题:矩形的对角线相等,矩形特殊的性质,矩形的四个角都是直角,矩形的两条对角线相等,从角上看:,从对角线上看:,矩形的 两条对角线互相平分,矩形的两组对边分别相等,矩形的两组对边分别平行,矩形的四个角都是直角,矩形 的两条对角线相等,边,对角线,角,数学语言,四边形ABCD是矩形,AD=BC,CD=AB,AD BC,CD AB,AC=BD,AO=CO,OD=OB,矩形的性质,比一比,知关系,对边平行且相等,对角相等邻角互补,对角线互相
4、平分,中心对称图形,对边平行且相等,四个角为直角,对角线互相平分且相等,中心对称图形 轴对称图形,O,练习:,如图,在矩形ABCD中,找出相等的线段与相等的角。,小试牛刀,O,D,C,B,A,相等的线段:,AB=CD AD=BC AC=BD OA=OC=OB=OD=AC=BD,相等的角:,DAB=ABC=BCD=CDA=90 AOB=DOC,AOD=BOCOAB=OBA=ODC=OCD OAD=ODA=OBC=OCB,等腰三角形有:,OAB OBC OCD OAD,直角三角形有:,RtABC RtBCD RtCDA RtDAB,全等三角形有:,RtABC RtBCD RtCDA RtDABOA
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 矩形 性质 课件 02
链接地址:https://www.31ppt.com/p-4535636.html