四点共圆基本性质及证明精编版.doc
《四点共圆基本性质及证明精编版.doc》由会员分享,可在线阅读,更多相关《四点共圆基本性质及证明精编版.doc(6页珍藏版)》请在三一办公上搜索。
1、四点共圆如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”。四点共圆有三个性质:(1) 共圆的四个点所连成同侧共底的两个三角形的顶角相等; (2)圆内接四边形的对角互补;(3) 圆内接四边形的外角等于内对角。以上性质可以根据圆周角等于它所对弧的度数的一半进行证明。1定理判定定理方法1: 把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆。(可以说成:若线段同侧二点到线段两端点连线夹角相等,那么这二点和线段二端点四点共圆)方法2 :把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的
2、内对角时,即可肯定这四点共圆。(可以说成:若平面上四点连成四边形的对角互补或一个外角等于其内对角,那么这四点共圆)托勒密定理若ABCD四点共圆(ABCD按顺序都在同一个圆上),那么ABDC+BCAD=ACBD。例题:证明对于任意正整数n都存在n个点使得所有点间两两距离为整数。解答:归纳法。我们用归纳法证明一个更强的定理:对于任意n都存在n个点使得所有点间两两距离为整数,且这n个点共圆,并且有两点是一条直径的两端。n=1,n=2很轻松。当n=3时,一个边长为整数的勾股三角形即可:比如说边长为3,4,5的三角形。我们发现这样的三个点共圆,边长最长的边是一条直径。假设对于n大于等于3成立,我们来证明
3、n+1。假设直径为r(整数)。找一个不跟已存在的以这个直径为斜边的三角形相似的一个整数勾股三角形ABC(边长abc)。把原来的圆扩大到原来的c倍,并把一个边长为rarbrc的三角形放进去,使得rc边和放大后的直径重合。这个三角形在圆上面对应了第n+1个点,记为P。于是根据Ptolomy定理,P和已存在的所有点的距离都是一个有理数。(考虑P,这个点Q和直径两端的四个点,这四点共圆,于是PQ是一个有理数因为Ptolomy定理里的其它数都是整数。)引入一个新的点P增加了n个新的有理数距离,记这n个有理数的最大公分母为M。最后只需要把这个新的图扩大到原来的M倍即可。归纳法成立,故有这个命题。反证法证明
4、现就“若平面上四点连成四边形的对角互补。那么这个四点共圆”证明如下(其它画个证明图如后)已知:四边形ABCD中,A+C=180求证:四边形ABCD内接于一个圆(A,B,C,D四点共圆)证明:用反证法过A,B,D作圆O,假设C不在圆O上,点C在圆外或圆内,若点C在圆外,设BC交圆O于C,连结DC,根据圆内接四边形的性质得A+DCB=180 ,A+C=180 DCB=C这与三角形外角定理矛盾,故C不可能在圆外。类似地可证C不可能在圆内。C在圆O上,也即A,B,C,D四点共圆。2证明方法方法1从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆周上,若能证明这一点,即可肯定这四点共圆方法2把被
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 四点 基本 性质 证明 精编
链接地址:https://www.31ppt.com/p-4528163.html