反比例函数全章复习与巩固基础知识讲解.docx
《反比例函数全章复习与巩固基础知识讲解.docx》由会员分享,可在线阅读,更多相关《反比例函数全章复习与巩固基础知识讲解.docx(16页珍藏版)》请在三一办公上搜索。
1、反比例函数全章复习与巩固(基础) 【学习目标】1使学生理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析式,能判断一个给定函数是否为反比例函数;2能描点画出反比例函数的图象,会用待定系数法求反比例函数的解析式;3能根据图象数形结合地分析并掌握反比例函数的性质,能利用这些性质分析和解决一些简单的实际问题.【知识网络】【要点梳理】【高清课堂406878 反比例函数全章复习 知识要点】要点一、反比例函数的概念一般地,形如 (为常数,)的函数称为反比例函数,其中是自变量,是函数,自变量的取值范围是不等于0的一切实数.要点诠释:在中,自变量的取值范围是, ()可以写成()的形式,也可
2、以写成的形式.要点二、反比例函数解析式的确定 反比例函数解析式的确定方法是待定系数法.由于反比例函数中,只有一个待定系数,因此只需要知道一对的对应值或图象上的一个点的坐标,即可求出的值,从而确定其解析式.典型例题】类型一、确定反比例函数的解析式1、已知函数是反比例函数,则的值为. 【答案】【解析】根据反比例函数概念,且,可确定的值.【总结升华】反比例函数要满足以下两点:一个是自变量的次数是1,另一个是自变量的系数不等于0.举一反三:【变式】反比例函数图象经过点(2,3),则的值是( ).A. B. C. 0D. 1【答案】D;反比例函数过点(2,3) 要点三、反比例函数的图象和性质1.反比例函
3、数的图象反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限它们关于原点对称,反比例函数的图象与轴、轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交要点诠释:观察反比例函数的图象可得:和的值都不能为0,并且图象既是轴对称图形,又是中心对称图形,它有两条对称轴,对称中心是坐标原点的图象是轴对称图形,对称轴为两条直线;的图象是中心对称图形,对称中心为原点(0,0);(k0)在同一坐标系中的图象关于轴对称,也关于轴对称. 注:正比例函数与反比例函数,当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称. 2.反比例函数的性
4、质(1)图象位置与反比例函数性质 当时,同号,图象在第一、三象限,且在每个象限内,随的增大而减小;当时,异号,图象在第二、四象限,且在每个象限内,随的增大而增大.(2)若点()在反比例函数的图象上,则点()也在此图象上,故反比例函数的图象关于原点对称.(3)正比例函数与反比例函数的性质比较正比例函数反比例函数解析式图 像直线有两个分支组成的曲线(双曲线)位 置,一、三象限;,二、四象限,一、三象限,二、四象限增减性,随的增大而增大,随的增大而减小,在每个象限,随的增大而减小,在每个象限,随的增大而增大(4)反比例函数y中的意义过双曲线(0) 上任意一点作轴、轴的垂线,所得矩形的面积为.过双曲线
5、(0) 上任意一点作一坐标轴的垂线,连接该点和原点,所得三角形的面积为.类型二、反比例函数的图象及性质2、已知,反比例函数的图象在每个分支中随的增大而减小,试求的取值范围【思路点拨】由反比例函数性质知,当0时,在每个象限内随的增大而减小,由此可求出的取值范围,进一步可求出的取值范围【答案与解析】解:由题意得:,解得,所以,则3【总结升华】熟记并能灵活运用反比例函数的性质是解答本题的关键举一反三:【变式】已知反比例函数,其图象位于第一、第三象限内,则的值可为_(写出满足条件的一个的值即可)【答案】3(满足2即可).3、在函数(,为常数)的图象上有三点(3,)、(2,)、(4,),则函数值的大小关
6、系是( )A B C D【答案】D;【解析】 |0, |0,反比例函数的图象在第二、四象限,且在每一个象限里,随增大而增大,(3,)、(2,)在第二象限,(4,)在第四象限, 它们的大小关系是:【总结升华】根据反比例函数的性质,比较函数值的大小时,要注意相应点所在的象限,不能一概而论,本题的点(3,)、(2,)在双曲线的第二象限的分支上,因为32,所以,点(4,)在第四象限,其函数值小于其他两个函数值举一反三:【变式1】(2014春海口期中)在同一坐标系中,函数y=和y=kx+3(k0)的图象大致是().A. B.C. D. 【答案】C;提示:分两种情况讨论:当k0时,y=kx+3与y轴的交点
7、在正半轴,过一、二、三象限,y=的图象在第一、三象限;当k0时,y=kx+3与y轴的交点在正半轴,过一、二、四象限,y=的图象在第二、四象限故选C【高清课堂406878 反比例函数全章复习 例7】【变式2】已知,且则函数与在同一坐标系中的图象不可能是( ) . 【答案】B ;提示:因为从B的图像上分析,对于直线来说是,则,对于反比例函数来说,所以相互之间是矛盾的,不可能存在这样的图形.4、如图所示,P是反比例函数图象上一点,若图中阴影部分的面积是2,求此反比例函数的关系式【思路点拨】要求函数关系式,必须先求出的值,P点既在函数的图象上又是矩形的顶点,也就是说,P点的横、纵坐标的绝对值是矩形的边
8、长【答案与解析】解:设P点的坐标为(,),由图可知,P点在第二象限, 0,0 图中阴影部分矩形的长、宽分别为、 矩形的面积为2, 2, 2 , 2 此反比例函数的关系式是【总结升华】此类题目,要充分利用过双曲线上任意一点作轴、轴的垂线所得矩形面积为|这一条件,进行坐标、线段、面积间的转换举一反三:【变式】如图,过反比例函数的图象上任意两点A、B,分别作轴的垂线,垂足为,连接OA,OB,与OB的交点为P,记AOP与梯形的面积分别为,试比较的大小.【答案】解:, 且,.类型三、反比例函数与一次函数综合5、已知反比例函数和一次函数的图象的一个交点坐标是(3,4),且一次函数的图象与轴的交点到原点的距
9、离为5,分别确定反比例函数和一次函数的表达式【思路点拨】因为点(3,4)是反比例函数与一次函数的图象的一个交点,所以把(3,4)代入中即可求出反比例函数的表达式欲求一次函数的表达式,有两个待定未知数,已知一个点(3,4),只需再求一个一次函数图象上的点即可由已知一次函数图象与轴的交点到原点的距离是5,则这个交点坐标为(5,0)或(5,0),分类讨论即可求得一次函数的解析式【答案与解析】解:因为函数的图象经过点(3,4), 所以,所以12 所以反比例函数的表达式是 由题意可知,一次函数的图象与轴的交点坐标为(5,0)或(5,0),则分两种情况讨论:当直线经过点(3,4)和(5,0)时,有 解得所
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 反比例 函数 复习 巩固 基础知识 讲解
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-4527018.html